Image Title

Search Results for Joe Damassa:

Joe Damassa, IBM & Murali Nemani, ScienceLogic | IBM Think 2019


 

>> Live from San Francisco. It's theCUBE covering IBM Think 2019 brought to you by IBM. >> Welcome back everyone, this is the CUBE's live coverage in San Francisco at Moscone Center for IBM Think 2019. I'm John Furrier with Dave. Volante Dave it's been in AI, it's been cloud, it's been in data changing the game. We've got two great guests here Murali Nemani, CMO of ScienceLogic, your CEO has been on the CUBE before and Joe Damassa who is the VP of strategy and offerings for hybrid cloud service at IBM. Thanks for joining us. >> Welcome. >> Appreciate it. >> Thank you guys. >> Welcome to CUBE. So day four of four days coverage, yes, you can see the messaging settling the feedback settling, AI clearly front and center, role of data in that and then cloud scale across multiple capabilities. Obviously on premise multi cloud is existing already. Software's changing all this. >> Right. >> And so AI impacting operations is key. So how do you guys work together? What's the relationships in ScienceLogic and IBM? Could you just take a minute to explain that? >> I think I mean, clearly, as you talked about the hybrid nature of what we're dealing with, with the complexity of it, it's all going to be about the data. You know, software is great, but it's about software that collects the data, analyzes the data, and gives you the insights so you can actually automate and create value for our clients. So it's really this marriage, it's a technology but it's a technology that allows us to get access to the data so we can make change, it's all about the data. >> And so a lot of what IBM has been doing is building the analytics engines and Watson it's for them. Our partnership has been really building the data and the data lake and the real time aspects of collecting and preparing that data so that you can really get interesting outcomes out of it. So when you think about predictive models, when you think about the the way that data can be applied to doing things like anomaly detection that ultimately accelerate and automate operations. That's where the relationship really starts taking hold. >> So you guys are specialized in AIops and IT apparatus as that transforms with scale and data which you need machine running, you need a kind of gave it automation. >> Yes. >> And which is the devops use of operations is don't go down, right, up and running, high availability. >> Yeah. >> So on the cloud services side, talk about where the rubber is meeting the road from a customer standpoint, because the cultural shift from IT Service Management, IT operations has been this manual, some software here and there, but it's been a process. Older processes change a little bit, but this is a new game. Talk about how you guys are engaging the customers. >> Well, a part of it I mean, it's interesting when you step back and you stop breathing, you're on exhaust in terms of pushing what you're trying to sell and you listen to your customers what we're hearing is that they all understand the destination. They understand they're moving to the cloud, they understand the value that's going to bring, they're having a hard time getting started. It's how do I start the journey ? I've got all of this estate and traditional IT operations capabilities it's kind of move. How do I modernize it? How do I make it so it's portable across different environments. And so when you step back, you know, we basically said, hey, you need the portability of the platform. So what we're doing with Red Hat, what we're doing with IBM, cloud private, it creates that portable containerizing ability to take our existing workloads and start moving them, right. And then the other thing that the clients need are the services. Who's going to help me advise me on what workloads should move, which one shouldn't, most of the staff fails because you move the wrong things. How do you manage that? How do you build it? And then when you're done, and you've got this hybrid complex environment, how do we actually get insights to it and the data I need to operationalize it? How do I do IT apps, when I don't own everything within the four walls of my data set. >> Now, are you guys going to market together? You guys sell each other products, the relationship with ScienceLogic and IBM is it a partnership, is it a joint development? Can you explain a little bit more on how you guys work together? >> Well, we're one of the largest sort of services provider in the industry. So as we bring, our products, our technologies and our capabilities to market, we bring ScienceLogic into those deals, we use ScienceLogic in our services so that we can actually deliver the value to our clients. So it is sort of a co development, co joint partnership plus also our goal to market. >> So you use that as a tool to do discovery and identify the data that's in and the data that we're talking about is everything I need to know about my IT operations, my applications, the dependencies. Maybe you could describe a little bit more. >> Sure if you think about one of the things that Joe was mentioning is, today, the workloads are shifting, you're going from, let's say management performance monitoring and management platforms that you need to evolve from, to incorporate new technologies like containers and microservices and server-less architectures. That's one area of how did the tool sets fundamentally evolve to support the latest technologies that are being deployed? So think about that. Second is, how do you consolidate those set of tools now you're managing? Because you're adopting cloud based technologies or new capabilities, and so get consolidation there. And the third is, these workloads that are now migrating out of your private cloud or private data center into public clouds, right? And then that workload migration, I think it is Forrester level saying, about 20% of the total workloads are currently in some sort of a public cloud environments. So there's a lot of work to do in terms of getting to that tipping point of where workloads are now truly in a multi cloud hybrid cloud. So as IBM accelerates that transition and their core competencies in helping these large enterprises make that transition, you need a common manageable environment, that the common visibility across those workloads. So that's at the heart of what we're pulling, and then the data sets happened to be data sets that are coming either from the application layer, data coming from the log management systems, it could be data coming from a service desk in terms of the kind of CMDB based data sets, and we're building a data lake that ultimately allows you to see across these heterogeneous system. >> It could be service request to get that really touches the business process so you can now start to sort of map the value and how change is going to affect that value, right? >> Yeah, exactly. >> Yeah. >> I mean, what's interesting about ScienceLogic as a partner, it's the breadth of their platform in terms of the different things they can monitor, the depth, the ability to go into containers, and kind of understand what the applications are doing in them and the scale in terms of the types of devices. So when you think about, the types of devices, we're going to have to manage everything from, sensors in an Internet of Things, environment to routers, to sophisticated servers and applications that can be running anywhere, you need the flexibility of the platform that they have in order to be able to deliver that. >> And I think that's a key point when you talking about containers and Kubernetes, we heard your CEO Jeannie remitting mentioned Kubernetes, onstage like, that's great, good time(mumbles) I know no one like Kubernetes now it's mainstream. >> Yeah. >> So this is showing them what's going on the industry which is the on premise decomposition of on premise with cloud private, you guys have. >> Yes. >> Is giving them the ability to use containers to manage their existing stuff and do that work and then have the extension to cloud, public cloud or whatever public cloud. This gives them more mount modern capabilities. So the question is, this change the game we know that but how has it changed AIOps and what does it mean? So I guess the first question is, what is AIOps? And what is this new on premise with cloud private and full public cloud architecture look like in AIOps 2.0? >> So for me, it's a very simple definition. It's really using algorithmic mechanisms, right? Towards automating operations, right? It's a very simple way, simplistic way of looking at it. But ultimately, the end game is to automate operations because you need to move at the pace of business and machine speed. And if you want to go, move in machine speed, you can have, I mean, you can't throw enough humans at this problems, right? Because of the pace of change, the familiarity of the workloads spinning up and sitting down. We have a bank as a customer who turns up containers for every 90 seconds and then turn them down. Just can't keep that in that real time state of change and being able to understand the topological relationships between the application layer and the underlying infrastructure so that you can truly understand the service health because when an application degrades in performance, the biggest issue is a war room's scenario where everyone's saying, it's not me, it's not me and because everyone's green on their front, but it's now how do you get that connective tissue all the way running-- >> Well it's also not only the change, it's also the velocity of data coming off that exhaust or the changes and services is thrown off tons of data that you need machines now I mean, that's kind of the thing. >> Exactly, yeah. And I would add to that, I think part of the definition of AIOps is evolving. We know where we're coming from is more fit for purpose analytics, right? I have this problem, I'm the collect this data, I'm going to put these automations in place too address it. We need to kind of take it data Model approach that says, how do I ingest all of this data? You know, even at the start, when you're looking at which workloads and you're doing discovery and assessment of workloads, that data should go into a data lake that can be used later when you're actually doing the operations and management of those workloads. So what data do we collect at every stage of the migration and the transformation of it, and including the operational data? And then how do we put a form analytics on it, and then get the true insights? I think we're just scratching the surface of applying to AI, because it's all been very narrow cast, narrow focus, I have this problem, I collect this data, I can automate this server, it needs to move much beyond that to it... >> And services are turning up and on and off so fast as a non deterministic angle here, and you got state, non deterministic, I mean, those are hard technical computer science problems to solve >> Yeah. >> That's you don't just put a processor around say, oh, yeah. >> Well, let's back to the the scalability of the platform, the ability in real time to be monitoring and looking at that data and then doing something right. >> All right now, humans aren't completely removed from the equation, right? And so I'm interested in how the humans are digesting and visualizing all this data, especially at this speed there a visualization component? How does that all evolving? >> Yeah, I think that to me I mean, that's part of the biggest challenges. You humans are a, they have to be the ones that kind of analyze what's coming and say, what does this mean when you haven't already algorithmically built it into your automation technology, right? And then they also don't have to be the one to train, the system is doing to actually do it. So one of the things that were are that struggling with not struggling with, we're experimenting with is, how best to visualize this, right? We do some things now, we've got a hybrid cloud management platform, we're teaming with the product guys, and it's the ability to have four consoles. One from a consumption, how do I consume services from Amazon, IBM Cloud on premise, how do I deploy it? So in a Dev apps model, how do I fulfill that very quickly and operational councils, right, and then cost on asset management so you can actually have at glance say, oh, you know, I've got a big Hadoop cluster which been spun up, I'm paying $100,000 for it and it has zero utilization. So how do you visualize that so you can say oh, I'm need to put a rule in that if somebody's spinning something up on, you know, IBM Cloud and they're not using it, I either shut it down, or I sent messages out, right, for governance in top of it. So it's putting business rules and logic in terms, in addition to visualization to help automate. >> And Jeannie talked about this at our keynote efficiency versus innovation around how to manage and this is where the scale comes in. Because if you know that something's working, you want to to double down on it, you can then, kind of automate that away and then you just move someone, the humans to something else. This is where the AIOps I think it's going to be, I think, going to change the category. I mean, it's a Gartner Magic Quadrant for the IT operations. >> Right. >> AI potentially decimates that, I mean... >> Yeah, there's this argument that you know, you have these nice quadrants or let's say nicely defined market segments. You have the NPMD, the ITSM, the ITOM, you know, you have APM and so what's happening is in this world of AIOps, none of those D marks really fit anymore because you're seeing the convergence of that. And then the other transition that's happening is this movement from, you know, classic ops or Dev and a dev to Ops, Dev Ops and now dev sec Ops, you know, you're trying to get worlds to converge. And so when we talk about the data and being able to build data models, those data models need to converge across those domains. So a lot of the work we do is collect data sets from log management, from service desk and service management, from APM etc, and then build that data model in real time. So you can.... >> It kind of building an Uber or CMDB or I mean, right? (loud laughter) I mean, do most of your clients have a single CMDB? Probably not, right? >> Yeah. So this is sort of a new guidepost, isn't it? >> Yeah, a part of it is. There are these data puddles if you will, all right data exist in a lot of different places How do you bring them together so you can federate different data sources, different catalogs into a common platform because if a user is trying to decide, okay, should I spin this up on, you know, this environment or that one, you want the full catalog of capabilities that are on premise in your CMDB system with the legacy environment out of the catalogs that may exist on Amazon or Azure, etc and you want data across all that. >> It seems that everything's a data problem now. And datas are being embedded into the applications which are then the workflows are defining infrastructure, architecture, or are sole cloud, multi cloud, whatever the resource is, so we had JPMorgan Chase on top data geek on and she was talking about, we have models for the models and IBM has been talking about this concept of reasoning around the data. This is why I always like the cognition kind of angle of cognitive, because that's not just math, math is math, you do math on, you know, supervised machine learning and knowing processes to be efficient, but the cognition and the reasoning really helps get at that data set, right. So can you guys react to that? I mean, is everything a data problem? Is that how you should look at it and how does reasoning fit into all this? >> Well, I mean, that's back to your point about what is the humans role in this, right. So we're moving in a services business from primarily labor base with tools to make them more efficient to the technology doing the work. But the humans have to then say, when the technology get stumped, what does that mean? So should I build a new, how do I train it better? How do I, you know, take my domain expertise? How do I do the deep analytics to tell me all right, how do I solve those problems in the future? So the role changes I think Jenny talks about in terms of new collar workers. I mean, these are data scientists, these are people that understand the dynamics of the inner relationship of the different data, the data models that need to get built and they are guiding in effect the automation. >> I thought your CTO was on theCUBE talking about, Paul was talking about, you know, take the heavy and Rob Thomas was also on, the GM of the data plus AI team. I think he really nailed it. If you guys to take away the heavy lifting of the setup work then the data science who're actually there to do the reasoning or help assist in managing what's going on and putting guard rails around whatever business policy is. >> Today, I mean, we talked to in this about 79 percent I think it's a gardener stat of 79 percent of the data scientists. And these are these PhDs, they're highly valuable, spend their time collecting, preparing, cleansing those data models, right? So, you're now really applying that PhD level knowledge base towards solving a problem, you're just trying to make sense of the data. So one, do you have a holistic and a few? Two, is there a way to automate those things so you can then apply the human aspects towards the things that Joe was talking about. So that's a big part of what we're trying to come together in terms of the market for. >> Well guys thanks for the insight, thanks for coming on, great job. I think we talked for you know, an hour and on cultural shift because you mentioned the sets in here Ops and devs. It's a melting pot and it's a cultural shifts. I think that topic is worth following up on. But I'll let you guys just get a quick plug for you. I know you going to an event coming up and you got some work. You can talk about what you guys are doing. You got an event coming up, what your pitch, give a quick flag. >> Yeah, so we've got our symposium, which is our big user conference. It's in April. It's right in, it's on April 22 to 23rd to the 25th. It's in downtown Washington DC, Cherry Blossom festival season at the Ritz Carlton. And so a lot of that, we'll have theCUBE there as well. >> Yeah of course. >> So, we're looking forward to it. A lot of great energy to be carried over. >> We love going to the District. (laughs loudly) >> What don't we say, you guys are great, great to visit. So give the plugs with a service you're doing. Just give an update on what you guys are up to. >> Yeah, I think I mean, we're also we're investing the technology when we're full on board with the containerization, as we talked about, we're putting together a services portfolio. I think Jenny mentioned that we're taking a whole bunch of capability across IBM Global Technology Services, Global Business Services, and really coalescing into about, you know, 23 offerings to help customers advise on cloud, move to cloud build for cloud and manage on cloud and then you've seen the announcements here about what we're doing around the multi cloud management system. Those four console I talked about how do we help, you know, put a gearbox in place to manage the complexity of the hybrid nature that our customers are dealing with. >> It seems IBM got clear visibility on what's happening with cloud, cloud private, I think a really big announcement. I think it's not talked about in the show and I'll always kind of mentioned the key linchpin but you see cloud, multi cloud, hybrid cloud, you got AI and you got partnerships, ecosystem now its execution time, right? >> Yeah, exactly and, and frankly, that's the challenge, right? So we used to be able to manage it all on the four runs, right? Your SAP instances was in the data center, your servers were in the data center, your middleware is in the data center. Now I got my applications running in Salesforce.com often software as a service. I've got three or four different infrastructures of service providers. But I still have the legacy that I got to deal with. I mean the integration problems are just tremendous. >> Chairman VP of strategy at IBM hybrid cloud and Murali Nemani, CMO ScienceLogic, AI operations, bringing in hybrid clouds to theCUBE bringing all the coverage day four. I'm with Dave Volante, it's all about cloud AI developers all happening here in San Francisco this week. Stay with us from this short break. (upbeat music)

Published Date : Feb 15 2019

SUMMARY :

brought to you by IBM. it's been in data changing the game. the feedback settling, So how do you guys work together? that collects the data, analyzes the data, and the data lake and So you guys are specialized in AIops and running, high availability. So on the cloud services and the data I need to operationalize it? and our capabilities to market, and the data that we're talking about and management platforms that you need flexibility of the platform point when you talking about private, you guys have. So the question is, this and the underlying infrastructure that you need machines now I mean, the surface of applying to AI, That's you don't just put the ability in real time to be monitoring the system is doing to actually do it. the humans to something else. AI potentially the ITOM, you know, you have APM So this is sort of a and you want data across all that. of reasoning around the data. How do I do the deep analytics to tell me GM of the data plus AI team. of the data scientists. I think we talked for you know, an hour season at the Ritz Carlton. A lot of great energy to be carried over. We love going to the District. So give the plugs with of the hybrid nature and you got partnerships, But I still have the legacy bringing all the coverage day four.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
IBMORGANIZATION

0.99+

DavePERSON

0.99+

JeanniePERSON

0.99+

Murali NemaniPERSON

0.99+

Joe DamassaPERSON

0.99+

AmazonORGANIZATION

0.99+

John FurrierPERSON

0.99+

JoePERSON

0.99+

$100,000QUANTITY

0.99+

Dave VolantePERSON

0.99+

PaulPERSON

0.99+

Rob ThomasPERSON

0.99+

ScienceLogicORGANIZATION

0.99+

threeQUANTITY

0.99+

JennyPERSON

0.99+

San FranciscoLOCATION

0.99+

IBM Global Technology ServicesORGANIZATION

0.99+

SecondQUANTITY

0.99+

April 22DATE

0.99+

79 percentQUANTITY

0.99+

first questionQUANTITY

0.99+

Global Business ServicesORGANIZATION

0.99+

thirdQUANTITY

0.99+

TodayDATE

0.99+

AprilDATE

0.99+

oneQUANTITY

0.99+

UberORGANIZATION

0.99+

JPMorgan ChaseORGANIZATION

0.99+

AIOpsTITLE

0.99+

four daysQUANTITY

0.98+

this weekDATE

0.98+

fourQUANTITY

0.98+

todayDATE

0.98+

TwoQUANTITY

0.97+

23rdDATE

0.97+

Moscone CenterLOCATION

0.97+

AIOps 2.0TITLE

0.96+

two great guestsQUANTITY

0.96+

SAPORGANIZATION

0.95+

about 20%QUANTITY

0.95+

about 79 percentQUANTITY

0.95+

23 offeringsQUANTITY

0.94+

GartnerORGANIZATION

0.94+

KubernetesTITLE

0.94+

90 secQUANTITY

0.94+

CUBEORGANIZATION

0.94+

OneQUANTITY

0.94+

CMDBORGANIZATION

0.93+

ForresterORGANIZATION

0.92+

Cherry Blossom festivalEVENT

0.91+

25thDATE

0.89+

zero utilizationQUANTITY

0.89+

singleQUANTITY

0.87+

four consolesQUANTITY

0.86+

eachQUANTITY

0.84+

CMDBTITLE

0.83+

2019EVENT

0.82+

four consoleQUANTITY

0.81+

Red HatORGANIZATION

0.81+

ITOMORGANIZATION

0.77+

2019DATE

0.77+

four runsQUANTITY

0.76+

CMO ScienceLogicORGANIZATION

0.74+

one areaQUANTITY

0.73+