Image Title

Search Results for Hugging Face:

SiliconANGLE News | AWS Responds to OpenAI with Hugging Face Expanded Partnership


 

(upbeat music) >> Hello everyone. Welcome to Silicon Angle news breaking story here. Amazon Web Services, expanding their relationship with Hugging Face, breaking news here on Silicon Angle. I'm John Furrier, Silicon Angle reporter, founder and also co-host of theCUBE. And I have with me Swami from Amazon Web Services, vice president of database analytics machine learning with AWS. Swami, great to have you on for this breaking news segment on AWS's big news. Thanks for coming on, taking the time. >> Hey John, pleasure to be here. >> We've had many conversations on theCUBE over the years. We've watched Amazon really move fast into the large data modeling. You SageMaker became a very smashing success. Obviously you've been on this for a while, now with Chat GPT, open AI, a lot of buzz going mainstream, takes it from behind the curtain, inside the ropes, if you will, in the industry to a mainstream. And so this is a big moment I think in the industry. I want to get your perspective because your news with Hugging Face, I think is a is another tell sign that we're about to tip over into a new accelerated growth around making AI now application aware application centric, more programmable, more API access. What's the big news about with AWS Hugging Face, you know, what's going on with this announcement? >> Yeah, first of all, they're very excited to announce our expanded collaboration with Hugging Face because with this partnership, our goal, as you all know, I mean Hugging Face I consider them like the GitHub for machine learning. And with this partnership, Hugging Face and AWS will be able to democratize AI for a broad range of developers, not just specific deep AI startups. And now with this we can accelerate the training, fine tuning, and deployment of these large language models and vision models from Hugging Face in the cloud. So, and the broader context, when you step back and see what customer problem we are trying to solve with this announcement, essentially if you see these foundational models are used to now create like a huge number of applications, suggest like tech summarization, question answering, or search image generation, creative, other things. And these are all stuff we are seeing in the likes of these Chat GPT style applications. But there is a broad range of enterprise use cases that we don't even talk about. And it's because these kind of transformative generative AI capabilities and models are not available to, I mean, millions of developers. And because either training these elements from scratch can be very expensive or time consuming and need deep expertise, or more importantly, they don't need these generic models. They need them to be fine tuned for the specific use cases. And one of the biggest complaints we hear is that these models, when they try to use it for real production use cases, they are incredibly expensive to train and incredibly expensive to run inference on, to use it at a production scale, so And unlike search, web search style applications where the margins can be really huge, here in production use cases and enterprises, you want efficiency at scale. That's where a Hugging Face and AWS share our mission. And by integrating with Trainium and Inferentia, we're able to handle the cost efficient training and inference at scale. I'll deep dive on it and by training teaming up on the SageMaker front now the time it takes to build these models and fine tune them as also coming down. So that's what makes this partnership very unique as well. So I'm very excited. >> I want to get into the, to the time savings and the cost savings as well on the on the training and inference. It's a huge issue. But before we get into that, just how long have you guys been working with Hugging Face? I know this is a previous relationship. This is an expansion of that relationship. Can you comment on the what's different about what's happened before and then now? >> Yeah, so Hugging Face, we have had an great relationship in the past few years as well where they have actually made their models available to run on AWS in a fashion, even inspect their Bloom project was something many of our customers even used. Bloom Project for context is their open source project, which builds a GPT three style model. And now with this expanded collaboration, now Hugging Face selected AWS for that next generation of this generative AI model, building on their highly successful Bloom project as well. And the nice thing is now by direct integration with Trainium and Inferentia, where you get cost savings in a really significant way. Now for instance, tier 1 can provide up to 50% cost to train savings, and Inferentia can deliver up to 60% better costs and Forex more higher throughput. Now these models, especially as they train that next generation generated AI model, it is going to be not only more accessible to all the developers who use it in open. So it'll be a lot cheaper as well. And that's what makes this moment really exciting because yeah, we can't democratize AI unless we make it broadly accessible and cost efficient, and easy to program and use as well. >> Okay, thanks Swami. We really appreciate. Swami's a Cube alumni, but also vice President, database analyst machine learning web services breaking down the Hugging Face announcement. Obviously the relationship he called it the GitHub of machine learning. This is the beginning of what we will see, a continuing competitive battle with Microsoft. Microsoft launching OpenAI. Amazon's been doing it for years. They got Alexa, they know what they're doing. It's going to be very interesting to see how this all plays out. You're watching Silicon Angle News, breaking here. I'm John Furrier, host of the Cube. Thanks for watching. (ethereal music)

Published Date : Feb 23 2023

SUMMARY :

And I have with me Swami into the large data modeling. the time it takes to build these models and the cost savings as well on the and easy to program and use as well. I'm John Furrier, host of the

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Amazon Web ServicesORGANIZATION

0.99+

John FurrierPERSON

0.99+

JohnPERSON

0.99+

AWSORGANIZATION

0.99+

MicrosoftORGANIZATION

0.99+

SwamiPERSON

0.99+

AmazonORGANIZATION

0.99+

millionsQUANTITY

0.99+

GitHubORGANIZATION

0.98+

AlexaTITLE

0.98+

InferentiaORGANIZATION

0.97+

Silicon AngleORGANIZATION

0.97+

TrainiumORGANIZATION

0.97+

Hugging FaceORGANIZATION

0.96+

oneQUANTITY

0.95+

up to 60%QUANTITY

0.95+

up to 50%QUANTITY

0.95+

CubeORGANIZATION

0.94+

Hugging FaceTITLE

0.94+

Chat GPTTITLE

0.86+

BloomPERSON

0.84+

OpenAITITLE

0.83+

theCUBEORGANIZATION

0.77+

Chat GPTTITLE

0.76+

1OTHER

0.75+

Silicon Angle NewsTITLE

0.74+

FaceTITLE

0.73+

BloomTITLE

0.72+

developersQUANTITY

0.7+

TrainiumTITLE

0.7+

Silicon AngleORGANIZATION

0.64+

past few yearsDATE

0.63+

BloomORGANIZATION

0.56+

SiliconANGLE NewsTITLE

0.55+

SageMakerTITLE

0.53+

tierQUANTITY

0.52+

HuggingORGANIZATION

0.49+

SiliconORGANIZATION

0.48+

AngleLOCATION

0.47+

Closing Panel | Generative AI: Riding the Wave | AWS Startup Showcase S3 E1


 

(mellow music) >> Hello everyone, welcome to theCUBE's coverage of AWS Startup Showcase. This is the closing panel session on AI machine learning, the top startups generating generative AI on AWS. It's a great panel. This is going to be the experts talking about riding the wave in generative AI. We got Ankur Mehrotra, who's the director and general manager of AI and machine learning at AWS, and Clem Delangue, co-founder and CEO of Hugging Face, and Ori Goshen, who's the co-founder and CEO of AI21 Labs. Ori from Tel Aviv dialing in, and rest coming in here on theCUBE. Appreciate you coming on for this closing session for the Startup Showcase. >> Thanks for having us. >> Thank you for having us. >> Thank you. >> I'm super excited to have you all on. Hugging Face was recently in the news with the AWS relationship, so congratulations. Open source, open science, really driving the machine learning. And we got the AI21 Labs access to the LLMs, generating huge scale live applications, commercial applications, coming to the market, all powered by AWS. So everyone, congratulations on all your success, and thank you for headlining this panel. Let's get right into it. AWS is powering this wave here. We're seeing a lot of push here from applications. Ankur, set the table for us on the AI machine learning. It's not new, it's been goin' on for a while. Past three years have been significant advancements, but there's been a lot of work done in AI machine learning. Now it's released to the public. Everybody's super excited and now says, "Oh, the future's here!" It's kind of been going on for a while and baking. Now it's kind of coming out. What's your view here? Let's get it started. >> Yes, thank you. So, yeah, as you may be aware, Amazon has been in investing in machine learning research and development since quite some time now. And we've used machine learning to innovate and improve user experiences across different Amazon products, whether it's Alexa or Amazon.com. But we've also brought in our expertise to extend what we are doing in the space and add more generative AI technology to our AWS products and services, starting with CodeWhisperer, which is an AWS service that we announced a few months ago, which is, you can think of it as a coding companion as a service, which uses generative AI models underneath. And so this is a service that customers who have no machine learning expertise can just use. And we also are talking to customers, and we see a lot of excitement about generative AI, and customers who want to build these models themselves, who have the talent and the expertise and resources. For them, AWS has a number of different options and capabilities they can leverage, such as our custom silicon, such as Trainium and Inferentia, as well as distributed machine learning capabilities that we offer as part of SageMaker, which is an end-to-end machine learning development service. At the same time, many of our customers tell us that they're interested in not training and building these generative AI models from scratch, given they can be expensive and can require specialized talent and skills to build. And so for those customers, we are also making it super easy to bring in existing generative AI models into their machine learning development environment within SageMaker for them to use. So we recently announced our partnership with Hugging Face, where we are making it super easy for customers to bring in those models into their SageMaker development environment for fine tuning and deployment. And then we are also partnering with other proprietary model providers such as AI21 and others, where we making these generative AI models available within SageMaker for our customers to use. So our approach here is to really provide customers options and choices and help them accelerate their generative AI journey. >> Ankur, thank you for setting the table there. Clem and Ori, I want to get your take, because the riding the waves, the theme of this session, and to me being in California, I imagine the big surf, the big waves, the big talent out there. This is like alpha geeks, alpha coders, developers are really leaning into this. You're seeing massive uptake from the smartest people. Whether they're young or around, they're coming in with their kind of surfboards, (chuckles) if you will. These early adopters, they've been on this for a while; Now the waves are hitting. This is a big wave, everyone sees it. What are some of those early adopter devs doing? What are some of the use cases you're seeing right out of the gate? And what does this mean for the folks that are going to come in and get on this wave? Can you guys share your perspective on this? Because you're seeing the best talent now leaning into this. >> Yeah, absolutely. I mean, from Hugging Face vantage points, it's not even a a wave, it's a tidal wave, or maybe even the tide itself. Because actually what we are seeing is that AI and machine learning is not something that you add to your products. It's very much a new paradigm to do all technology. It's this idea that we had in the past 15, 20 years, one way to build software and to build technology, which was writing a million lines of code, very rule-based, and then you get your product. Now what we are seeing is that every single product, every single feature, every single company is starting to adopt AI to build the next generation of technology. And that works both to make the existing use cases better, if you think of search, if you think of social network, if you think of SaaS, but also it's creating completely new capabilities that weren't possible with the previous paradigm. Now AI can generate text, it can generate image, it can describe your image, it can do so many new things that weren't possible before. >> It's going to really make the developers really productive, right? I mean, you're seeing the developer uptake strong, right? >> Yes, we have over 15,000 companies using Hugging Face now, and it keeps accelerating. I really think that maybe in like three, five years, there's not going to be any company not using AI. It's going to be really kind of the default to build all technology. >> Ori, weigh in on this. APIs, the cloud. Now I'm a developer, I want to have live applications, I want the commercial applications on this. What's your take? Weigh in here. >> Yeah, first, I absolutely agree. I mean, we're in the midst of a technology shift here. I think not a lot of people realize how big this is going to be. Just the number of possibilities is endless, and I think hard to imagine. And I don't think it's just the use cases. I think we can think of it as two separate categories. We'll see companies and products enhancing their offerings with these new AI capabilities, but we'll also see new companies that are AI first, that kind of reimagine certain experiences. They build something that wasn't possible before. And that's why I think it's actually extremely exciting times. And maybe more philosophically, I think now these large language models and large transformer based models are helping us people to express our thoughts and kind of making the bridge from our thinking to a creative digital asset in a speed we've never imagined before. I can write something down and get a piece of text, or an image, or a code. So I'll start by saying it's hard to imagine all the possibilities right now, but it's certainly big. And if I had to bet, I would say it's probably at least as big as the mobile revolution we've seen in the last 20 years. >> Yeah, this is the biggest. I mean, it's been compared to the Enlightenment Age. I saw the Wall Street Journal had a recent story on this. We've been saying that this is probably going to be bigger than all inflection points combined in the tech industry, given what transformation is coming. I guess I want to ask you guys, on the early adopters, we've been hearing on these interviews and throughout the industry that there's already a set of big companies, a set of companies out there that have a lot of data and they're already there, they're kind of tinkering. Kind of reminds me of the old hyper scaler days where they were building their own scale, and they're eatin' glass, spittin' nails out, you know, they're hardcore. Then you got everybody else kind of saying board level, "Hey team, how do I leverage this?" How do you see those two things coming together? You got the fast followers coming in behind the early adopters. What's it like for the second wave coming in? What are those conversations for those developers like? >> I mean, I think for me, the important switch for companies is to change their mindset from being kind of like a traditional software company to being an AI or machine learning company. And that means investing, hiring machine learning engineers, machine learning scientists, infrastructure in members who are working on how to put these models in production, team members who are able to optimize models, specialized models, customized models for the company's specific use cases. So it's really changing this mindset of how you build technology and optimize your company building around that. Things are moving so fast that I think now it's kind of like too late for low hanging fruits or small, small adjustments. I think it's important to realize that if you want to be good at that, and if you really want to surf this wave, you need massive investments. If there are like some surfers listening with this analogy of the wave, right, when there are waves, it's not enough just to stand and make a little bit of adjustments. You need to position yourself aggressively, paddle like crazy, and that's how you get into the waves. So that's what companies, in my opinion, need to do right now. >> Ori, what's your take on the generative models out there? We hear a lot about foundation models. What's your experience running end-to-end applications for large foundation models? Any insights you can share with the app developers out there who are looking to get in? >> Yeah, I think first of all, it's start create an economy, where it probably doesn't make sense for every company to create their own foundation models. You can basically start by using an existing foundation model, either open source or a proprietary one, and start deploying it for your needs. And then comes the second round when you are starting the optimization process. You bootstrap, whether it's a demo, or a small feature, or introducing new capability within your product, and then start collecting data. That data, and particularly the human feedback data, helps you to constantly improve the model, so you create this data flywheel. And I think we're now entering an era where customers have a lot of different choice of how they want to start their generative AI endeavor. And it's a good thing that there's a variety of choices. And the really amazing thing here is that every industry, any company you speak with, it could be something very traditional like industrial or financial, medical, really any company. I think peoples now start to imagine what are the possibilities, and seriously think what's their strategy for adopting this generative AI technology. And I think in that sense, the foundation model actually enabled this to become scalable. So the barrier to entry became lower; Now the adoption could actually accelerate. >> There's a lot of integration aspects here in this new wave that's a little bit different. Before it was like very monolithic, hardcore, very brittle. A lot more integration, you see a lot more data coming together. I have to ask you guys, as developers come in and grow, I mean, when I went to college and you were a software engineer, I mean, I got a degree in computer science, and software engineering, that's all you did was code, (chuckles) you coded. Now, isn't it like everyone's a machine learning engineer at this point? Because that will be ultimately the science. So, (chuckles) you got open source, you got open software, you got the communities. Swami called you guys the GitHub of machine learning, Hugging Face is the GitHub of machine learning, mainly because that's where people are going to code. So this is essentially, machine learning is computer science. What's your reaction to that? >> Yes, my co-founder Julien at Hugging Face have been having this thing for quite a while now, for over three years, which was saying that actually software engineering as we know it today is a subset of machine learning, instead of the other way around. People would call us crazy a few years ago when we're seeing that. But now we are realizing that you can actually code with machine learning. So machine learning is generating code. And we are starting to see that every software engineer can leverage machine learning through open models, through APIs, through different technology stack. So yeah, it's not crazy anymore to think that maybe in a few years, there's going to be more people doing AI and machine learning. However you call it, right? Maybe you'll still call them software engineers, maybe you'll call them machine learning engineers. But there might be more of these people in a couple of years than there is software engineers today. >> I bring this up as more tongue in cheek as well, because Ankur, infrastructure's co is what made Cloud great, right? That's kind of the DevOps movement. But here the shift is so massive, there will be a game-changing philosophy around coding. Machine learning as code, you're starting to see CodeWhisperer, you guys have had coding companions for a while on AWS. So this is a paradigm shift. How is the cloud playing into this for you guys? Because to me, I've been riffing on some interviews where it's like, okay, you got the cloud going next level. This is an example of that, where there is a DevOps-like moment happening with machine learning, whether you call it coding or whatever. It's writing code on its own. Can you guys comment on what this means on top of the cloud? What comes out of the scale? What comes out of the benefit here? >> Absolutely, so- >> Well first- >> Oh, go ahead. >> Yeah, so I think as far as scale is concerned, I think customers are really relying on cloud to make sure that the applications that they build can scale along with the needs of their business. But there's another aspect to it, which is that until a few years ago, John, what we saw was that machine learning was a data scientist heavy activity. They were data scientists who were taking the data and training models. And then as machine learning found its way more and more into production and actual usage, we saw the MLOps become a thing, and MLOps engineers become more involved into the process. And then we now are seeing, as machine learning is being used to solve more business critical problems, we're seeing even legal and compliance teams get involved. We are seeing business stakeholders more engaged. So, more and more machine learning is becoming an activity that's not just performed by data scientists, but is performed by a team and a group of people with different skills. And for them, we as AWS are focused on providing the best tools and services for these different personas to be able to do their job and really complete that end-to-end machine learning story. So that's where, whether it's tools related to MLOps or even for folks who cannot code or don't know any machine learning. For example, we launched SageMaker Canvas as a tool last year, which is a UI-based tool which data analysts and business analysts can use to build machine learning models. So overall, the spectrum in terms of persona and who can get involved in the machine learning process is expanding, and the cloud is playing a big role in that process. >> Ori, Clem, can you guys weigh in too? 'Cause this is just another abstraction layer of scale. What's it mean for you guys as you look forward to your customers and the use cases that you're enabling? >> Yes, I think what's important is that the AI companies and providers and the cloud kind of work together. That's how you make a seamless experience and you actually reduce the barrier to entry for this technology. So that's what we've been super happy to do with AWS for the past few years. We actually announced not too long ago that we are doubling down on our partnership with AWS. We're excited to have many, many customers on our shared product, the Hugging Face deep learning container on SageMaker. And we are working really closely with the Inferentia team and the Trainium team to release some more exciting stuff in the coming weeks and coming months. So I think when you have an ecosystem and a system where the AWS and the AI providers, AI startups can work hand in hand, it's to the benefit of the customers and the companies, because it makes it orders of magnitude easier for them to adopt this new paradigm to build technology AI. >> Ori, this is a scale on reasoning too. The data's out there and making sense out of it, making it reason, getting comprehension, having it make decisions is next, isn't it? And you need scale for that. >> Yes. Just a comment about the infrastructure side. So I think really the purpose is to streamline and make these technologies much more accessible. And I think we'll see, I predict that we'll see in the next few years more and more tooling that make this technology much more simple to consume. And I think it plays a very important role. There's so many aspects, like the monitoring the models and their kind of outputs they produce, and kind of containing and running them in a production environment. There's so much there to build on, the infrastructure side will play a very significant role. >> All right, that's awesome stuff. I'd love to change gears a little bit and get a little philosophy here around AI and how it's going to transform, if you guys don't mind. There's been a lot of conversations around, on theCUBE here as well as in some industry areas, where it's like, okay, all the heavy lifting is automated away with machine learning and AI, the complexity, there's some efficiencies, it's horizontal and scalable across all industries. Ankur, good point there. Everyone's going to use it for something. And a lot of stuff gets brought to the table with large language models and other things. But the key ingredient will be proprietary data or human input, or some sort of AI whisperer kind of role, or prompt engineering, people are saying. So with that being said, some are saying it's automating intelligence. And that creativity will be unleashed from this. If the heavy lifting goes away and AI can fill the void, that shifts the value to the intellect or the input. And so that means data's got to come together, interact, fuse, and understand each other. This is kind of new. I mean, old school AI was, okay, got a big model, I provisioned it long time, very expensive. Now it's all free flowing. Can you guys comment on where you see this going with this freeform, data flowing everywhere, heavy lifting, and then specialization? >> Yeah, I think- >> Go ahead. >> Yeah, I think, so what we are seeing with these large language models or generative models is that they're really good at creating stuff. But I think it's also important to recognize their limitations. They're not as good at reasoning and logic. And I think now we're seeing great enthusiasm, I think, which is justified. And the next phase would be how to make these systems more reliable. How to inject more reasoning capabilities into these models, or augment with other mechanisms that actually perform more reasoning so we can achieve more reliable results. And we can count on these models to perform for critical tasks, whether it's medical tasks, legal tasks. We really want to kind of offload a lot of the intelligence to these systems. And then we'll have to get back, we'll have to make sure these are reliable, we'll have to make sure we get some sort of explainability that we can understand the process behind the generated results that we received. So I think this is kind of the next phase of systems that are based on these generated models. >> Clem, what's your view on this? Obviously you're at open community, open source has been around, it's been a great track record, proven model. I'm assuming creativity's going to come out of the woodwork, and if we can automate open source contribution, and relationships, and onboarding more developers, there's going to be unleashing of creativity. >> Yes, it's been so exciting on the open source front. We all know Bert, Bloom, GPT-J, T5, Stable Diffusion, that work up. The previous or the current generation of open source models that are on Hugging Face. It has been accelerating in the past few months. So I'm super excited about ControlNet right now that is really having a lot of impact, which is kind of like a way to control the generation of images. Super excited about Flan UL2, which is like a new model that has been recently released and is open source. So yeah, it's really fun to see the ecosystem coming together. Open source has been the basis for traditional software, with like open source programming languages, of course, but also all the great open source that we've gotten over the years. So we're happy to see that the same thing is happening for machine learning and AI, and hopefully can help a lot of companies reduce a little bit the barrier to entry. So yeah, it's going to be exciting to see how it evolves in the next few years in that respect. >> I think the developer productivity angle that's been talked about a lot in the industry will be accelerated significantly. I think security will be enhanced by this. I think in general, applications are going to transform at a radical rate, accelerated, incredible rate. So I think it's not a big wave, it's the water, right? I mean, (chuckles) it's the new thing. My final question for you guys, if you don't mind, I'd love to get each of you to answer the question I'm going to ask you, which is, a lot of conversations around data. Data infrastructure's obviously involved in this. And the common thread that I'm hearing is that every company that looks at this is asking themselves, if we don't rebuild our company, start thinking about rebuilding our business model around AI, we might be dinosaurs, we might be extinct. And it reminds me that scene in Moneyball when, at the end, it's like, if we're not building the model around your model, every company will be out of business. What's your advice to companies out there that are having those kind of moments where it's like, okay, this is real, this is next gen, this is happening. I better start thinking and putting into motion plans to refactor my business, 'cause it's happening, business transformation is happening on the cloud. This kind of puts an exclamation point on, with the AI, as a next step function. Big increase in value. So it's an opportunity for leaders. Ankur, we'll start with you. What's your advice for folks out there thinking about this? Do they put their toe in the water? Do they jump right into the deep end? What's your advice? >> Yeah, John, so we talk to a lot of customers, and customers are excited about what's happening in the space, but they often ask us like, "Hey, where do we start?" So we always advise our customers to do a lot of proof of concepts, understand where they can drive the biggest ROI. And then also leverage existing tools and services to move fast and scale, and try and not reinvent the wheel where it doesn't need to be. That's basically our advice to customers. >> Get it. Ori, what's your advice to folks who are scratching their head going, "I better jump in here. "How do I get started?" What's your advice? >> So I actually think that need to think about it really economically. Both on the opportunity side and the challenges. So there's a lot of opportunities for many companies to actually gain revenue upside by building these new generative features and capabilities. On the other hand, of course, this would probably affect the cogs, and incorporating these capabilities could probably affect the cogs. So I think we really need to think carefully about both of these sides, and also understand clearly if this is a project or an F word towards cost reduction, then the ROI is pretty clear, or revenue amplifier, where there's, again, a lot of different opportunities. So I think once you think about this in a structured way, I think, and map the different initiatives, then it's probably a good way to start and a good way to start thinking about these endeavors. >> Awesome. Clem, what's your take on this? What's your advice, folks out there? >> Yes, all of these are very good advice already. Something that you said before, John, that I disagreed a little bit, a lot of people are talking about the data mode and proprietary data. Actually, when you look at some of the organizations that have been building the best models, they don't have specialized or unique access to data. So I'm not sure that's so important today. I think what's important for companies, and it's been the same for the previous generation of technology, is their ability to build better technology faster than others. And in this new paradigm, that means being able to build machine learning faster than others, and better. So that's how, in my opinion, you should approach this. And kind of like how can you evolve your company, your teams, your products, so that you are able in the long run to build machine learning better and faster than your competitors. And if you manage to put yourself in that situation, then that's when you'll be able to differentiate yourself to really kind of be impactful and get results. That's really hard to do. It's something really different, because machine learning and AI is a different paradigm than traditional software. So this is going to be challenging, but I think if you manage to nail that, then the future is going to be very interesting for your company. >> That's a great point. Thanks for calling that out. I think this all reminds me of the cloud days early on. If you went to the cloud early, you took advantage of it when the pandemic hit. If you weren't native in the cloud, you got hamstrung by that, you were flatfooted. So just get in there. (laughs) Get in the cloud, get into AI, you're going to be good. Thanks for for calling that. Final parting comments, what's your most exciting thing going on right now for you guys? Ori, Clem, what's the most exciting thing on your plate right now that you'd like to share with folks? >> I mean, for me it's just the diversity of use cases and really creative ways of companies leveraging this technology. Every day I speak with about two, three customers, and I'm continuously being surprised by the creative ideas. And the future is really exciting of what can be achieved here. And also I'm amazed by the pace that things move in this industry. It's just, there's not at dull moment. So, definitely exciting times. >> Clem, what are you most excited about right now? >> For me, it's all the new open source models that have been released in the past few weeks, and that they'll keep being released in the next few weeks. I'm also super excited about more and more companies getting into this capability of chaining different models and different APIs. I think that's a very, very interesting development, because it creates new capabilities, new possibilities, new functionalities that weren't possible before. You can plug an API with an open source embedding model, with like a no-geo transcription model. So that's also very exciting. This capability of having more interoperable machine learning will also, I think, open a lot of interesting things in the future. >> Clem, congratulations on your success at Hugging Face. Please pass that on to your team. Ori, congratulations on your success, and continue to, just day one. I mean, it's just the beginning. It's not even scratching the service. Ankur, I'll give you the last word. What are you excited for at AWS? More cloud goodness coming here with AI. Give you the final word. >> Yeah, so as both Clem and Ori said, I think the research in the space is moving really, really fast, so we are excited about that. But we are also excited to see the speed at which enterprises and other AWS customers are applying machine learning to solve real business problems, and the kind of results they're seeing. So when they come back to us and tell us the kind of improvement in their business metrics and overall customer experience that they're driving and they're seeing real business results, that's what keeps us going and inspires us to continue inventing on their behalf. >> Gentlemen, thank you so much for this awesome high impact panel. Ankur, Clem, Ori, congratulations on all your success. We'll see you around. Thanks for coming on. Generative AI, riding the wave, it's a tidal wave, it's the water, it's all happening. All great stuff. This is season three, episode one of AWS Startup Showcase closing panel. This is the AI ML episode, the top startups building generative AI on AWS. I'm John Furrier, your host. Thanks for watching. (mellow music)

Published Date : Mar 9 2023

SUMMARY :

This is the closing panel I'm super excited to have you all on. is to really provide and to me being in California, and then you get your product. kind of the default APIs, the cloud. and kind of making the I saw the Wall Street Journal I think it's important to realize that the app developers out there So the barrier to entry became lower; I have to ask you guys, instead of the other way around. That's kind of the DevOps movement. and the cloud is playing a and the use cases that you're enabling? the barrier to entry And you need scale for that. in the next few years and AI can fill the void, a lot of the intelligence and if we can automate reduce a little bit the barrier to entry. I'd love to get each of you drive the biggest ROI. to folks who are scratching So I think once you think Clem, what's your take on this? and it's been the same of the cloud days early on. And also I'm amazed by the pace in the past few weeks, Please pass that on to your team. and the kind of results they're seeing. This is the AI ML episode,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Ankur MehrotraPERSON

0.99+

JohnPERSON

0.99+

AWSORGANIZATION

0.99+

ClemPERSON

0.99+

Ori GoshenPERSON

0.99+

John FurrierPERSON

0.99+

CaliforniaLOCATION

0.99+

OriPERSON

0.99+

Clem DelanguePERSON

0.99+

Hugging FaceORGANIZATION

0.99+

JulienPERSON

0.99+

AnkurPERSON

0.99+

AmazonORGANIZATION

0.99+

Tel AvivLOCATION

0.99+

threeQUANTITY

0.99+

AnkurORGANIZATION

0.99+

second roundQUANTITY

0.99+

AI21 LabsORGANIZATION

0.99+

two separate categoriesQUANTITY

0.99+

Amazon.comORGANIZATION

0.99+

last yearDATE

0.99+

two thingsQUANTITY

0.99+

firstQUANTITY

0.98+

over 15,000 companiesQUANTITY

0.98+

BothQUANTITY

0.98+

five yearsQUANTITY

0.98+

bothQUANTITY

0.98+

over three yearsQUANTITY

0.98+

three customersQUANTITY

0.98+

eachQUANTITY

0.98+

TrainiumORGANIZATION

0.98+

todayDATE

0.98+

AlexaTITLE

0.98+

Stable DiffusionORGANIZATION

0.97+

SwamiPERSON

0.97+

InferentiaORGANIZATION

0.96+

GPT-JORGANIZATION

0.96+

SageMakerTITLE

0.96+

AI21 LabsORGANIZATION

0.95+

Riding the WaveTITLE

0.95+

ControlNetORGANIZATION

0.94+

one wayQUANTITY

0.94+

a million linesQUANTITY

0.93+

Startup ShowcaseEVENT

0.92+

few months agoDATE

0.92+

second waveEVENT

0.91+

theCUBEORGANIZATION

0.91+

few years agoDATE

0.91+

CodeWhispererTITLE

0.9+

AI21ORGANIZATION

0.89+

Adam Wenchel & John Dickerson, Arthur | AWS Startup Showcase S3 E1


 

(upbeat music) >> Welcome everyone to theCUBE's presentation of the AWS Startup Showcase AI Machine Learning Top Startups Building Generative AI on AWS. This is season 3, episode 1 of the ongoing series covering the exciting startup from the AWS ecosystem to talk about AI and machine learning. I'm your host, John Furrier. I'm joined by two great guests here, Adam Wenchel, who's the CEO of Arthur, and Chief Scientist of Arthur, John Dickerson. Talk about how they help people build better LLM AI systems to get them into the market faster. Gentlemen, thank you for coming on. >> Yeah, thanks for having us, John. >> Well, I got to say I got to temper my enthusiasm because the last few months explosion of interest in LLMs with ChatGPT, has opened the eyes to everybody around the reality of that this is going next gen, this is it, this is the moment, this is the the point we're going to look back and say, this is the time where AI really hit the scene for real applications. So, a lot of Large Language Models, also known as LLMs, foundational models, and generative AI is all booming. This is where all the alpha developers are going. This is where everyone's focusing their business model transformations on. This is where developers are seeing action. So it's all happening, the wave is here. So I got to ask you guys, what are you guys seeing right now? You're in the middle of it, it's hitting you guys right on. You're in the front end of this massive wave. >> Yeah, John, I don't think you have to temper your enthusiasm at all. I mean, what we're seeing every single day is, everything from existing enterprise customers coming in with new ways that they're rethinking, like business things that they've been doing for many years that they can now do an entirely different way, as well as all manner of new companies popping up, applying LLMs to everything from generating code and SQL statements to generating health transcripts and just legal briefs. Everything you can imagine. And when you actually sit down and look at these systems and the demos we get of them, the hype is definitely justified. It's pretty amazing what they're going to do. And even just internally, we built, about a month ago in January, we built an Arthur chatbot so customers could ask questions, technical questions from our, rather than read our product documentation, they could just ask this LLM a particular question and get an answer. And at the time it was like state of the art, but then just last week we decided to rebuild it because the tooling has changed so much that we, last week, we've completely rebuilt it. It's now way better, built on an entirely different stack. And the tooling has undergone a full generation worth of change in six weeks, which is crazy. So it just tells you how much energy is going into this and how fast it's evolving right now. >> John, weigh in as a chief scientist. I mean, you must be blown away. Talk about kid in the candy store. I mean, you must be looking like this saying, I mean, she must be super busy to begin with, but the change, the acceleration, can you scope the kind of change you're seeing and be specific around the areas you're seeing movement and highly accelerated change? >> Yeah, definitely. And it is very, very exciting actually, thinking back to when ChatGPT was announced, that was a night our company was throwing an event at NeurIPS, which is maybe the biggest machine learning conference out there. And the hype when that happened was palatable and it was just shocking to see how well that performed. And then obviously over the last few months since then, as LLMs have continued to enter the market, we've seen use cases for them, like Adam mentioned all over the place. And so, some things I'm excited about in this space are the use of LLMs and more generally, foundation models to redesign traditional operations, research style problems, logistics problems, like auctions, decisioning problems. So moving beyond the already amazing news cases, like creating marketing content into more core integration and a lot of the bread and butter companies and tasks that drive the American ecosystem. And I think we're just starting to see some of that. And in the next 12 months, I think we're going to see a lot more. If I had to make other predictions, I think we're going to continue seeing a lot of work being done on managing like inference time costs via shrinking models or distillation. And I don't know how to make this prediction, but at some point we're going to be seeing lots of these very large scale models operating on the edge as well. So the time scales are extremely compressed, like Adam mentioned, 12 months from now, hard to say. >> We were talking on theCUBE prior to this session here. We had theCUBE conversation here and then the Wall Street Journal just picked up on the same theme, which is the printing press moment created the enlightenment stage of the history. Here we're in the whole nother automating intellect efficiency, doing heavy lifting, the creative class coming back, a whole nother level of reality around the corner that's being hyped up. The question is, is this justified? Is there really a breakthrough here or is this just another result of continued progress with AI? Can you guys weigh in, because there's two schools of thought. There's the, "Oh my God, we're entering a new enlightenment tech phase, of the equivalent of the printing press in all areas. Then there's, Ah, it's just AI (indistinct) inch by inch. What's your guys' opinion? >> Yeah, I think on the one hand when you're down in the weeds of building AI systems all day, every day, like we are, it's easy to look at this as an incremental progress. Like we have customers who've been building on foundation models since we started the company four years ago, particular in computer vision for classification tasks, starting with pre-trained models, things like that. So that part of it doesn't feel real new, but what does feel new is just when you apply these things to language with all the breakthroughs and computational efficiency, algorithmic improvements, things like that, when you actually sit down and interact with ChatGPT or one of the other systems that's out there that's building on top of LLMs, it really is breathtaking, like, the level of understanding that they have and how quickly you can accelerate your development efforts and get an actual working system in place that solves a really important real world problem and makes people way faster, way more efficient. So I do think there's definitely something there. It's more than just incremental improvement. This feels like a real trajectory inflection point for the adoption of AI. >> John, what's your take on this? As people come into the field, I'm seeing a lot of people move from, hey, I've been coding in Python, I've been doing some development, I've been a software engineer, I'm a computer science student. I'm coding in C++ old school, OG systems person. Where do they come in? Where's the focus, where's the action? Where are the breakthroughs? Where are people jumping in and rolling up their sleeves and getting dirty with this stuff? >> Yeah, all over the place. And it's funny you mentioned students in a different life. I wore a university professor hat and so I'm very, very familiar with the teaching aspects of this. And I will say toward Adam's point, this really is a leap forward in that techniques like in a co-pilot for example, everybody's using them right now and they really do accelerate the way that we develop. When I think about the areas where people are really, really focusing right now, tooling is certainly one of them. Like you and I were chatting about LangChain right before this interview started, two or three people can sit down and create an amazing set of pipes that connect different aspects of the LLM ecosystem. Two, I would say is in engineering. So like distributed training might be one, or just understanding better ways to even be able to train large models, understanding better ways to then distill them or run them. So like this heavy interaction now between engineering and what I might call traditional machine learning from 10 years ago where you had to know a lot of math, you had to know calculus very well, things like that. Now you also need to be, again, a very strong engineer, which is exciting. >> I interviewed Swami when he talked about the news. He's ahead of Amazon's machine learning and AI when they announced Hugging Face announcement. And I reminded him how Amazon was easy to get into if you were developing a startup back in 2007,8, and that the language models had that similar problem. It's step up a lot of content and a lot of expense to get provisioned up, now it's easy. So this is the next wave of innovation. So how do you guys see that from where we are right now? Are we at that point where it's that moment where it's that cloud-like experience for LLMs and large language models? >> Yeah, go ahead John. >> I think the answer is yes. We see a number of large companies that are training these and serving these, some of which are being co-interviewed in this episode. I think we're at that. Like, you can hit one of these with a simple, single line of Python, hitting an API, you can boot this up in seconds if you want. It's easy. >> Got it. >> So I (audio cuts out). >> Well let's take a step back and talk about the company. You guys being featured here on the Showcase. Arthur, what drove you to start the company? How'd this all come together? What's the origination story? Obviously you got a big customers, how'd get started? What are you guys doing? How do you make money? Give a quick overview. >> Yeah, I think John and I come at it from slightly different angles, but for myself, I have been a part of a number of technology companies. I joined Capital One, they acquired my last company and shortly after I joined, they asked me to start their AI team. And so even though I've been doing AI for a long time, I started my career back in DARPA. It was the first time I was really working at scale in AI at an organization where there were hundreds of millions of dollars in revenue at stake with the operation of these models and that they were impacting millions of people's financial livelihoods. And so it just got me hyper-focused on these issues around making sure that your AI worked well and it worked well for your company and it worked well for the people who were being affected by it. At the time when I was doing this 2016, 2017, 2018, there just wasn't any tooling out there to support this production management model monitoring life phase of the life cycle. And so we basically left to start the company that I wanted. And John has a his own story. I'll let let you share that one, John. >> Go ahead John, you're up. >> Yeah, so I'm coming at this from a different world. So I'm on leave now from a tenured role in academia where I was leading a large lab focusing on the intersection of machine learning and economics. And so questions like fairness or the response to the dynamism on the underlying environment have been around for quite a long time in that space. And so I've been thinking very deeply about some of those more like R and D style questions as well as having deployed some automation code across a couple of different industries, some in online advertising, some in the healthcare space and so on, where concerns of, again, fairness come to bear. And so Adam and I connected to understand the space of what that might look like in the 2018 20 19 realm from a quantitative and from a human-centered point of view. And so booted things up from there. >> Yeah, bring that applied engineering R and D into the Capital One, DNA that he had at scale. I could see that fit. I got to ask you now, next step, as you guys move out and think about LLMs and the recent AI news around the generative models and the foundational models like ChatGPT, how should we be looking at that news and everyone watching might be thinking the same thing. I know at the board level companies like, we should refactor our business, this is the future. It's that kind of moment, and the tech team's like, okay, boss, how do we do this again? Or are they prepared? How should we be thinking? How should people watching be thinking about LLMs? >> Yeah, I think they really are transformative. And so, I mean, we're seeing companies all over the place. Everything from large tech companies to a lot of our large enterprise customers are launching significant projects at core parts of their business. And so, yeah, I would be surprised, if you're serious about becoming an AI native company, which most leading companies are, then this is a trend that you need to be taking seriously. And we're seeing the adoption rate. It's funny, I would say the AI adoption in the broader business world really started, let's call it four or five years ago, and it was a relatively slow adoption rate, but I think all that kind of investment in and scaling the maturity curve has paid off because the rate at which people are adopting and deploying systems based on this is tremendous. I mean, this has all just happened in the few months and we're already seeing people get systems into production. So, now there's a lot of things you have to guarantee in order to put these in production in a way that basically is added into your business and doesn't cause more headaches than it solves. And so that's where we help customers is where how do you put these out there in a way that they're going to represent your company well, they're going to perform well, they're going to do their job and do it properly. >> So in the use case, as a customer, as I think about this, there's workflows. They might have had an ML AI ops team that's around IT. Their inference engines are out there. They probably don't have a visibility on say how much it costs, they're kicking the tires. When you look at the deployment, there's a cost piece, there's a workflow piece, there's fairness you mentioned John, what should be, I should be thinking about if I'm going to be deploying stuff into production, I got to think about those things. What's your opinion? >> Yeah, I'm happy to dive in on that one. So monitoring in general is extremely important once you have one of these LLMs in production, and there have been some changes versus traditional monitoring that we can dive deeper into that LLMs are really accelerated. But a lot of that bread and butter style of things you should be looking out for remain just as important as they are for what you might call traditional machine learning models. So the underlying environment of data streams, the way users interact with these models, these are all changing over time. And so any performance metrics that you care about, traditional ones like an accuracy, if you can define that for an LLM, ones around, for example, fairness or bias. If that is a concern for your particular use case and so on. Those need to be tracked. Now there are some interesting changes that LLMs are bringing along as well. So most ML models in production that we see are relatively static in the sense that they're not getting flipped in more than maybe once a day or once a week or they're just set once and then not changed ever again. With LLMs, there's this ongoing value alignment or collection of preferences from users that is often constantly updating the model. And so that opens up all sorts of vectors for, I won't say attack, but for problems to arise in production. Like users might learn to use your system in a different way and thus change the way those preferences are getting collected and thus change your system in ways that you never intended. So maybe that went through governance already internally at the company and now it's totally, totally changed and it's through no fault of your own, but you need to be watching over that for sure. >> Talk about the reinforced learnings from human feedback. How's that factoring in to the LLMs? Is that part of it? Should people be thinking about that? Is that a component that's important? >> It certainly is, yeah. So this is one of the big tweaks that happened with InstructGPT, which is the basis model behind ChatGPT and has since gone on to be used all over the place. So value alignment I think is through RLHF like you mentioned is a very interesting space to get into and it's one that you need to watch over. Like, you're asking humans for feedback over outputs from a model and then you're updating the model with respect to that human feedback. And now you've thrown humans into the loop here in a way that is just going to complicate things. And it certainly helps in many ways. You can ask humans to, let's say that you're deploying an internal chat bot at an enterprise, you could ask humans to align that LLM behind the chatbot to, say company values. And so you're listening feedback about these company values and that's going to scoot that chatbot that you're running internally more toward the kind of language that you'd like to use internally on like a Slack channel or something like that. Watching over that model I think in that specific case, that's a compliance and HR issue as well. So while it is part of the greater LLM stack, you can also view that as an independent bit to watch over. >> Got it, and these are important factors. When people see the Bing news, they freak out how it's doing great. Then it goes off the rails, it goes big, fails big. (laughing) So these models people see that, is that human interaction or is that feedback, is that not accepting it or how do people understand how to take that input in and how to build the right apps around LLMs? This is a tough question. >> Yeah, for sure. So some of the examples that you'll see online where these chatbots go off the rails are obviously humans trying to break the system, but some of them clearly aren't. And that's because these are large statistical models and we don't know what's going to pop out of them all the time. And even if you're doing as much in-house testing at the big companies like the Go-HERE's and the OpenAI's of the world, to try to prevent things like toxicity or racism or other sorts of bad content that might lead to bad pr, you're never going to catch all of these possible holes in the model itself. And so, again, it's very, very important to keep watching over that while it's in production. >> On the business model side, how are you guys doing? What's the approach? How do you guys engage with customers? Take a minute to explain the customer engagement. What do they need? What do you need? How's that work? >> Yeah, I can talk a little bit about that. So it's really easy to get started. It's literally a matter of like just handing out an API key and people can get started. And so we also offer alternative, we also offer versions that can be installed on-prem for models that, we find a lot of our customers have models that deal with very sensitive data. So you can run it in your cloud account or use our cloud version. And so yeah, it's pretty easy to get started with this stuff. We find people start using it a lot of times during the validation phase 'cause that way they can start baselining performance models, they can do champion challenger, they can really kind of baseline the performance of, maybe they're considering different foundation models. And so it's a really helpful tool for understanding differences in the way these models perform. And then from there they can just flow that into their production inferencing, so that as these systems are out there, you have really kind of real time monitoring for anomalies and for all sorts of weird behaviors as well as that continuous feedback loop that helps you make make your product get better and observability and you can run all sorts of aggregated reports to really understand what's going on with these models when they're out there deciding. I should also add that we just today have another way to adopt Arthur and that is we are in the AWS marketplace, and so we are available there just to make it that much easier to use your cloud credits, skip the procurement process, and get up and running really quickly. >> And that's great 'cause Amazon's got SageMaker, which handles a lot of privacy stuff, all kinds of cool things, or you can get down and dirty. So I got to ask on the next one, production is a big deal, getting stuff into production. What have you guys learned that you could share to folks watching? Is there a cost issue? I got to monitor, obviously you brought that up, we talked about the even reinforcement issues, all these things are happening. What is the big learnings that you could share for people that are going to put these into production to watch out for, to plan for, or be prepared for, hope for the best plan for the worst? What's your advice? >> I can give a couple opinions there and I'm sure Adam has. Well, yeah, the big one from my side is, again, I had mentioned this earlier, it's just the input data streams because humans are also exploring how they can use these systems to begin with. It's really, really hard to predict the type of inputs you're going to be seeing in production. Especially, we always talk about chatbots, but then any generative text tasks like this, let's say you're taking in news articles and summarizing them or something like that, it's very hard to get a good sampling even of the set of news articles in such a way that you can really predict what's going to pop out of that model. So to me, it's, adversarial maybe isn't the word that I would use, but it's an unnatural shifting input distribution of like prompts that you might see for these models. That's certainly one. And then the second one that I would talk about is, it can be hard to understand the costs, the inference time costs behind these LLMs. So the pricing on these is always changing as the models change size, it might go up, it might go down based on model size, based on energy cost and so on, but your pricing per token or per a thousand tokens and that I think can be difficult for some clients to wrap their head around. Again, you don't know how these systems are going to be used after all so it can be tough. And so again that's another metric that really should be tracked. >> Yeah, and there's a lot of trade off choices in there with like, how many tokens do you want at each step and in the sequence and based on, you have (indistinct) and you reject these tokens and so based on how your system's operating, that can make the cost highly variable. And that's if you're using like an API version that you're paying per token. A lot of people also choose to run these internally and as John mentioned, the inference time on these is significantly higher than a traditional classifi, even NLP classification model or tabular data model, like orders of magnitude higher. And so you really need to understand how that, as you're constantly iterating on these models and putting out new versions and new features in these models, how that's affecting the overall scale of that inference cost because you can use a lot of computing power very quickly with these profits. >> Yeah, scale, performance, price all come together. I got to ask while we're here on the secret sauce of the company, if you had to describe to people out there watching, what's the secret sauce of the company? What's the key to your success? >> Yeah, so John leads our research team and they've had a number of really cool, I think AI as much as it's been hyped for a while, it's still commercial AI at least is really in its infancy. And so the way we're able to pioneer new ways to think about performance for computer vision NLP LLMs is probably the thing that I'm proudest about. John and his team publish papers all the time at Navs and other places. But I think it's really being able to define what performance means for basically any kind of model type and give people really powerful tools to understand that on an ongoing basis. >> John, secret sauce, how would you describe it? You got all the action happening all around you. >> Yeah, well I going to appreciate Adam talking me up like that. No, I. (all laughing) >> Furrier: Robs to you. >> I would also say a couple of other things here. So we have a very strong engineering team and so I think some early hires there really set the standard at a very high bar that we've maintained as we've grown. And I think that's really paid dividends as scalabilities become even more of a challenge in these spaces, right? And so that's not just scalability when it comes to LLMs, that's scalability when it comes to millions of inferences per day, that kind of thing as well in traditional ML models. And I think that's compared to potential competitors, that's really... Well, it's made us able to just operate more efficiently and pass that along to the client. >> Yeah, and I think the infancy comment is really important because it's the beginning. You really is a long journey ahead. A lot of change coming, like I said, it's a huge wave. So I'm sure you guys got a lot of plannings at the foundation even for your own company, so I appreciate the candid response there. Final question for you guys is, what should the top things be for a company in 2023? If I'm going to set the agenda and I'm a customer moving forward, putting the pedal to the metal, so to speak, what are the top things I should be prioritizing or I need to do to be successful with AI in 2023? >> Yeah, I think, so number one, as we talked about, we've been talking about this entire episode, the things are changing so quickly and the opportunities for business transformation and really disrupting different applications, different use cases, is almost, I don't think we've even fully comprehended how big it is. And so really digging in to your business and understanding where I can apply these new sets of foundation models is, that's a top priority. The interesting thing is I think there's another force at play, which is the macroeconomic conditions and a lot of places are, they're having to work harder to justify budgets. So in the past, couple years ago maybe, they had a blank check to spend on AI and AI development at a lot of large enterprises that was limited primarily by the amount of talent they could scoop up. Nowadays these expenditures are getting scrutinized more. And so one of the things that we really help our customers with is like really calculating the ROI on these things. And so if you have models out there performing and you have a new version that you can put out that lifts the performance by 3%, how many tens of millions of dollars does that mean in business benefit? Or if I want to go to get approval from the CFO to spend a few million dollars on this new project, how can I bake in from the beginning the tools to really show the ROI along the way? Because I think in these systems when done well for a software project, the ROI can be like pretty spectacular. Like we see over a hundred percent ROI in the first year on some of these projects. And so, I think in 2023, you just need to be able to show what you're getting for that spend. >> It's a needle moving moment. You see it all the time with some of these aha moments or like, whoa, blown away. John, I want to get your thoughts on this because one of the things that comes up a lot for companies that I talked to, that are on my second wave, I would say coming in, maybe not, maybe the front wave of adopters is talent and team building. You mentioned some of the hires you got were game changing for you guys and set the bar high. As you move the needle, new developers going to need to come in. What's your advice given that you've been a professor, you've seen students, I know a lot of computer science people want to shift, they might not be yet skilled in AI, but they're proficient in programming, is that's going to be another opportunity with open source when things are happening. How do you talk to that next level of talent that wants to come in to this market to supplement teams and be on teams, lead teams? Any advice you have for people who want to build their teams and people who are out there and want to be a coder in AI? >> Yeah, I've advice, and this actually works for what it would take to be a successful AI company in 2023 as well, which is, just don't be afraid to iterate really quickly with these tools. The space is still being explored on what they can be used for. A lot of the tasks that they're used for now right? like creating marketing content using a machine learning is not a new thing to do. It just works really well now. And so I'm excited to see what the next year brings in terms of folks from outside of core computer science who are, other engineers or physicists or chemists or whatever who are learning how to use these increasingly easy to use tools to leverage LLMs for tasks that I think none of us have really thought about before. So that's really, really exciting. And so toward that I would say iterate quickly. Build things on your own, build demos, show them the friends, host them online and you'll learn along the way and you'll have somebody to show for it. And also you'll help us explore that space. >> Guys, congratulations with Arthur. Great company, great picks and shovels opportunities out there for everybody. Iterate fast, get in quickly and don't be afraid to iterate. Great advice and thank you for coming on and being part of the AWS showcase, thanks. >> Yeah, thanks for having us on John. Always a pleasure. >> Yeah, great stuff. Adam Wenchel, John Dickerson with Arthur. Thanks for coming on theCUBE. I'm John Furrier, your host. Generative AI and AWS. Keep it right there for more action with theCUBE. Thanks for watching. (upbeat music)

Published Date : Mar 9 2023

SUMMARY :

of the AWS Startup Showcase has opened the eyes to everybody and the demos we get of them, but the change, the acceleration, And in the next 12 months, of the equivalent of the printing press and how quickly you can accelerate As people come into the field, aspects of the LLM ecosystem. and that the language models in seconds if you want. and talk about the company. of the life cycle. in the 2018 20 19 realm I got to ask you now, next step, in the broader business world So in the use case, as a the way users interact with these models, How's that factoring in to that LLM behind the chatbot and how to build the Go-HERE's and the OpenAI's What's the approach? differences in the way that are going to put So the pricing on these is always changing and in the sequence What's the key to your success? And so the way we're able to You got all the action Yeah, well I going to appreciate Adam and pass that along to the client. so I appreciate the candid response there. get approval from the CFO to spend You see it all the time with some of A lot of the tasks that and being part of the Yeah, thanks for having us Generative AI and AWS.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
JohnPERSON

0.99+

Adam WenchelPERSON

0.99+

AmazonORGANIZATION

0.99+

AdamPERSON

0.99+

John FurrierPERSON

0.99+

twoQUANTITY

0.99+

John DickersonPERSON

0.99+

2016DATE

0.99+

2018DATE

0.99+

2023DATE

0.99+

3%QUANTITY

0.99+

2017DATE

0.99+

Capital OneORGANIZATION

0.99+

last weekDATE

0.99+

AWSORGANIZATION

0.99+

ArthurPERSON

0.99+

PythonTITLE

0.99+

millionsQUANTITY

0.99+

TwoQUANTITY

0.99+

each stepQUANTITY

0.99+

2018 20 19DATE

0.99+

two schoolsQUANTITY

0.99+

couple years agoDATE

0.99+

once a weekQUANTITY

0.99+

oneQUANTITY

0.98+

first yearQUANTITY

0.98+

SwamiPERSON

0.98+

four years agoDATE

0.98+

fourDATE

0.98+

first timeQUANTITY

0.98+

ArthurORGANIZATION

0.98+

two great guestsQUANTITY

0.98+

next yearDATE

0.98+

once a dayQUANTITY

0.98+

six weeksQUANTITY

0.97+

10 years agoDATE

0.97+

ChatGPTTITLE

0.97+

second oneQUANTITY

0.96+

three peopleQUANTITY

0.96+

frontEVENT

0.95+

second waveEVENT

0.95+

JanuaryDATE

0.95+

hundreds of millions of dollarsQUANTITY

0.95+

five years agoDATE

0.94+

about a month agoDATE

0.94+

tens of millionsQUANTITY

0.93+

todayDATE

0.92+

next 12 monthsDATE

0.91+

LangChainORGANIZATION

0.91+

over a hundred percentQUANTITY

0.91+

million dollarsQUANTITY

0.89+

millions of inferencesQUANTITY

0.89+

theCUBEORGANIZATION

0.88+

Robert Nishihara, Anyscale | AWS Startup Showcase S3 E1


 

(upbeat music) >> Hello everyone. Welcome to theCube's presentation of the "AWS Startup Showcase." The topic this episode is AI and machine learning, top startups building foundational model infrastructure. This is season three, episode one of the ongoing series covering exciting startups from the AWS ecosystem. And this time we're talking about AI and machine learning. I'm your host, John Furrier. I'm excited I'm joined today by Robert Nishihara, who's the co-founder and CEO of a hot startup called Anyscale. He's here to talk about Ray, the open source project, Anyscale's infrastructure for foundation as well. Robert, thank you for joining us today. >> Yeah, thanks so much as well. >> I've been following your company since the founding pre pandemic and you guys really had a great vision scaled up and in a perfect position for this big wave that we all see with ChatGPT and OpenAI that's gone mainstream. Finally, AI has broken out through the ropes and now gone mainstream, so I think you guys are really well positioned. I'm looking forward to to talking with you today. But before we get into it, introduce the core mission for Anyscale. Why do you guys exist? What is the North Star for Anyscale? >> Yeah, like you mentioned, there's a tremendous amount of excitement about AI right now. You know, I think a lot of us believe that AI can transform just every different industry. So one of the things that was clear to us when we started this company was that the amount of compute needed to do AI was just exploding. Like to actually succeed with AI, companies like OpenAI or Google or you know, these companies getting a lot of value from AI, were not just running these machine learning models on their laptops or on a single machine. They were scaling these applications across hundreds or thousands or more machines and GPUs and other resources in the Cloud. And so to actually succeed with AI, and this has been one of the biggest trends in computing, maybe the biggest trend in computing in, you know, in recent history, the amount of compute has been exploding. And so to actually succeed with that AI, to actually build these scalable applications and scale the AI applications, there's a tremendous software engineering lift to build the infrastructure to actually run these scalable applications. And that's very hard to do. So one of the reasons many AI projects and initiatives fail is that, or don't make it to production, is the need for this scale, the infrastructure lift, to actually make it happen. So our goal here with Anyscale and Ray, is to make that easy, is to make scalable computing easy. So that as a developer or as a business, if you want to do AI, if you want to get value out of AI, all you need to know is how to program on your laptop. Like, all you need to know is how to program in Python. And if you can do that, then you're good to go. Then you can do what companies like OpenAI or Google do and get value out of machine learning. >> That programming example of how easy it is with Python reminds me of the early days of Cloud, when infrastructure as code was talked about was, it was just code the infrastructure programmable. That's super important. That's what AI people wanted, first program AI. That's the new trend. And I want to understand, if you don't mind explaining, the relationship that Anyscale has to these foundational models and particular the large language models, also called LLMs, was seen with like OpenAI and ChatGPT. Before you get into the relationship that you have with them, can you explain why the hype around foundational models? Why are people going crazy over foundational models? What is it and why is it so important? >> Yeah, so foundational models and foundation models are incredibly important because they enable businesses and developers to get value out of machine learning, to use machine learning off the shelf with these large models that have been trained on tons of data and that are useful out of the box. And then, of course, you know, as a business or as a developer, you can take those foundational models and repurpose them or fine tune them or adapt them to your specific use case and what you want to achieve. But it's much easier to do that than to train them from scratch. And I think there are three, for people to actually use foundation models, there are three main types of workloads or problems that need to be solved. One is training these foundation models in the first place, like actually creating them. The second is fine tuning them and adapting them to your use case. And the third is serving them and actually deploying them. Okay, so Ray and Anyscale are used for all of these three different workloads. Companies like OpenAI or Cohere that train large language models. Or open source versions like GPTJ are done on top of Ray. There are many startups and other businesses that fine tune, that, you know, don't want to train the large underlying foundation models, but that do want to fine tune them, do want to adapt them to their purposes, and build products around them and serve them, those are also using Ray and Anyscale for that fine tuning and that serving. And so the reason that Ray and Anyscale are important here is that, you know, building and using foundation models requires a huge scale. It requires a lot of data. It requires a lot of compute, GPUs, TPUs, other resources. And to actually take advantage of that and actually build these scalable applications, there's a lot of infrastructure that needs to happen under the hood. And so you can either use Ray and Anyscale to take care of that and manage the infrastructure and solve those infrastructure problems. Or you can build the infrastructure and manage the infrastructure yourself, which you can do, but it's going to slow your team down. It's going to, you know, many of the businesses we work with simply don't want to be in the business of managing infrastructure and building infrastructure. They want to focus on product development and move faster. >> I know you got a keynote presentation we're going to go to in a second, but I think you hit on something I think is the real tipping point, doing it yourself, hard to do. These are things where opportunities are and the Cloud did that with data centers. Turned a data center and made it an API. The heavy lifting went away and went to the Cloud so people could be more creative and build their product. In this case, build their creativity. Is that kind of what's the big deal? Is that kind of a big deal happening that you guys are taking the learnings and making that available so people don't have to do that? >> That's exactly right. So today, if you want to succeed with AI, if you want to use AI in your business, infrastructure work is on the critical path for doing that. To do AI, you have to build infrastructure. You have to figure out how to scale your applications. That's going to change. We're going to get to the point, and you know, with Ray and Anyscale, we're going to remove the infrastructure from the critical path so that as a developer or as a business, all you need to focus on is your application logic, what you want the the program to do, what you want your application to do, how you want the AI to actually interface with the rest of your product. Now the way that will happen is that Ray and Anyscale will still, the infrastructure work will still happen. It'll just be under the hood and taken care of by Ray in Anyscale. And so I think something like this is really necessary for AI to reach its potential, for AI to have the impact and the reach that we think it will, you have to make it easier to do. >> And just for clarification to point out, if you don't mind explaining the relationship of Ray and Anyscale real quick just before we get into the presentation. >> So Ray is an open source project. We created it. We were at Berkeley doing machine learning. We started Ray so that, in order to provide an easy, a simple open source tool for building and running scalable applications. And Anyscale is the managed version of Ray, basically we will run Ray for you in the Cloud, provide a lot of tools around the developer experience and managing the infrastructure and providing more performance and superior infrastructure. >> Awesome. I know you got a presentation on Ray and Anyscale and you guys are positioning as the infrastructure for foundational models. So I'll let you take it away and then when you're done presenting, we'll come back, I'll probably grill you with a few questions and then we'll close it out so take it away. >> Robert: Sounds great. So I'll say a little bit about how companies are using Ray and Anyscale for foundation models. The first thing I want to mention is just why we're doing this in the first place. And the underlying observation, the underlying trend here, and this is a plot from OpenAI, is that the amount of compute needed to do machine learning has been exploding. It's been growing at something like 35 times every 18 months. This is absolutely enormous. And other people have written papers measuring this trend and you get different numbers. But the point is, no matter how you slice and dice it, it' a astronomical rate. Now if you compare that to something we're all familiar with, like Moore's Law, which says that, you know, the processor performance doubles every roughly 18 months, you can see that there's just a tremendous gap between the needs, the compute needs of machine learning applications, and what you can do with a single chip, right. So even if Moore's Law were continuing strong and you know, doing what it used to be doing, even if that were the case, there would still be a tremendous gap between what you can do with the chip and what you need in order to do machine learning. And so given this graph, what we've seen, and what has been clear to us since we started this company, is that doing AI requires scaling. There's no way around it. It's not a nice to have, it's really a requirement. And so that led us to start Ray, which is the open source project that we started to make it easy to build these scalable Python applications and scalable machine learning applications. And since we started the project, it's been adopted by a tremendous number of companies. Companies like OpenAI, which use Ray to train their large models like ChatGPT, companies like Uber, which run all of their deep learning and classical machine learning on top of Ray, companies like Shopify or Spotify or Instacart or Lyft or Netflix, ByteDance, which use Ray for their machine learning infrastructure. Companies like Ant Group, which makes Alipay, you know, they use Ray across the board for fraud detection, for online learning, for detecting money laundering, you know, for graph processing, stream processing. Companies like Amazon, you know, run Ray at a tremendous scale and just petabytes of data every single day. And so the project has seen just enormous adoption since, over the past few years. And one of the most exciting use cases is really providing the infrastructure for building training, fine tuning, and serving foundation models. So I'll say a little bit about, you know, here are some examples of companies using Ray for foundation models. Cohere trains large language models. OpenAI also trains large language models. You can think about the workloads required there are things like supervised pre-training, also reinforcement learning from human feedback. So this is not only the regular supervised learning, but actually more complex reinforcement learning workloads that take human input about what response to a particular question, you know is better than a certain other response. And incorporating that into the learning. There's open source versions as well, like GPTJ also built on top of Ray as well as projects like Alpa coming out of UC Berkeley. So these are some of the examples of exciting projects in organizations, training and creating these large language models and serving them using Ray. Okay, so what actually is Ray? Well, there are two layers to Ray. At the lowest level, there's the core Ray system. This is essentially low level primitives for building scalable Python applications. Things like taking a Python function or a Python class and executing them in the cluster setting. So Ray core is extremely flexible and you can build arbitrary scalable applications on top of Ray. So on top of Ray, on top of the core system, what really gives Ray a lot of its power is this ecosystem of scalable libraries. So on top of the core system you have libraries, scalable libraries for ingesting and pre-processing data, for training your models, for fine tuning those models, for hyper parameter tuning, for doing batch processing and batch inference, for doing model serving and deployment, right. And a lot of the Ray users, the reason they like Ray is that they want to run multiple workloads. They want to train and serve their models, right. They want to load their data and feed that into training. And Ray provides common infrastructure for all of these different workloads. So this is a little overview of what Ray, the different components of Ray. So why do people choose to go with Ray? I think there are three main reasons. The first is the unified nature. The fact that it is common infrastructure for scaling arbitrary workloads, from data ingest to pre-processing to training to inference and serving, right. This also includes the fact that it's future proof. AI is incredibly fast moving. And so many people, many companies that have built their own machine learning infrastructure and standardized on particular workflows for doing machine learning have found that their workflows are too rigid to enable new capabilities. If they want to do reinforcement learning, if they want to use graph neural networks, they don't have a way of doing that with their standard tooling. And so Ray, being future proof and being flexible and general gives them that ability. Another reason people choose Ray in Anyscale is the scalability. This is really our bread and butter. This is the reason, the whole point of Ray, you know, making it easy to go from your laptop to running on thousands of GPUs, making it easy to scale your development workloads and run them in production, making it easy to scale, you know, training to scale data ingest, pre-processing and so on. So scalability and performance, you know, are critical for doing machine learning and that is something that Ray provides out of the box. And lastly, Ray is an open ecosystem. You can run it anywhere. You can run it on any Cloud provider. Google, you know, Google Cloud, AWS, Asure. You can run it on your Kubernetes cluster. You can run it on your laptop. It's extremely portable. And not only that, it's framework agnostic. You can use Ray to scale arbitrary Python workloads. You can use it to scale and it integrates with libraries like TensorFlow or PyTorch or JAX or XG Boost or Hugging Face or PyTorch Lightning, right, or Scikit-learn or just your own arbitrary Python code. It's open source. And in addition to integrating with the rest of the machine learning ecosystem and these machine learning frameworks, you can use Ray along with all of the other tooling in the machine learning ecosystem. That's things like weights and biases or ML flow, right. Or you know, different data platforms like Databricks, you know, Delta Lake or Snowflake or tools for model monitoring for feature stores, all of these integrate with Ray. And that's, you know, Ray provides that kind of flexibility so that you can integrate it into the rest of your workflow. And then Anyscale is the scalable compute platform that's built on top, you know, that provides Ray. So Anyscale is a managed Ray service that runs in the Cloud. And what Anyscale does is it offers the best way to run Ray. And if you think about what you get with Anyscale, there are fundamentally two things. One is about moving faster, accelerating the time to market. And you get that by having the managed service so that as a developer you don't have to worry about managing infrastructure, you don't have to worry about configuring infrastructure. You also, it provides, you know, optimized developer workflows. Things like easily moving from development to production, things like having the observability tooling, the debug ability to actually easily diagnose what's going wrong in a distributed application. So things like the dashboards and the other other kinds of tooling for collaboration, for monitoring and so on. And then on top of that, so that's the first bucket, developer productivity, moving faster, faster experimentation and iteration. The second reason that people choose Anyscale is superior infrastructure. So this is things like, you know, cost deficiency, being able to easily take advantage of spot instances, being able to get higher GPU utilization, things like faster cluster startup times and auto scaling. Things like just overall better performance and faster scheduling. And so these are the kinds of things that Anyscale provides on top of Ray. It's the managed infrastructure. It's fast, it's like the developer productivity and velocity as well as performance. So this is what I wanted to share about Ray in Anyscale. >> John: Awesome. >> Provide that context. But John, I'm curious what you think. >> I love it. I love the, so first of all, it's a platform because that's the platform architecture right there. So just to clarify, this is an Anyscale platform, not- >> That's right. >> Tools. So you got tools in the platform. Okay, that's key. Love that managed service. Just curious, you mentioned Python multiple times, is that because of PyTorch and TensorFlow or Python's the most friendly with machine learning or it's because it's very common amongst all developers? >> That's a great question. Python is the language that people are using to do machine learning. So it's the natural starting point. Now, of course, Ray is actually designed in a language agnostic way and there are companies out there that use Ray to build scalable Java applications. But for the most part right now we're focused on Python and being the best way to build these scalable Python and machine learning applications. But, of course, down the road there always is that potential. >> So if you're slinging Python code out there and you're watching that, you're watching this video, get on Anyscale bus quickly. Also, I just, while you were giving the presentation, I couldn't help, since you mentioned OpenAI, which by the way, congratulations 'cause they've had great scale, I've noticed in their rapid growth 'cause they were the fastest company to the number of users than anyone in the history of the computer industry, so major successor, OpenAI and ChatGPT, huge fan. I'm not a skeptic at all. I think it's just the beginning, so congratulations. But I actually typed into ChatGPT, what are the top three benefits of Anyscale and came up with scalability, flexibility, and ease of use. Obviously, scalability is what you guys are called. >> That's pretty good. >> So that's what they came up with. So they nailed it. Did you have an inside prompt training, buy it there? Only kidding. (Robert laughs) >> Yeah, we hard coded that one. >> But that's the kind of thing that came up really, really quickly if I asked it to write a sales document, it probably will, but this is the future interface. This is why people are getting excited about the foundational models and the large language models because it's allowing the interface with the user, the consumer, to be more human, more natural. And this is clearly will be in every application in the future. >> Absolutely. This is how people are going to interface with software, how they're going to interface with products in the future. It's not just something, you know, not just a chat bot that you talk to. This is going to be how you get things done, right. How you use your web browser or how you use, you know, how you use Photoshop or how you use other products. Like you're not going to spend hours learning all the APIs and how to use them. You're going to talk to it and tell it what you want it to do. And of course, you know, if it doesn't understand it, it's going to ask clarifying questions. You're going to have a conversation and then it'll figure it out. >> This is going to be one of those things, we're going to look back at this time Robert and saying, "Yeah, from that company, that was the beginning of that wave." And just like AWS and Cloud Computing, the folks who got in early really were in position when say the pandemic came. So getting in early is a good thing and that's what everyone's talking about is getting in early and playing around, maybe replatforming or even picking one or few apps to refactor with some staff and managed services. So people are definitely jumping in. So I have to ask you the ROI cost question. You mentioned some of those, Moore's Law versus what's going on in the industry. When you look at that kind of scale, the first thing that jumps out at people is, "Okay, I love it. Let's go play around." But what's it going to cost me? Am I going to be tied to certain GPUs? What's the landscape look like from an operational standpoint, from the customer? Are they locked in and the benefit was flexibility, are you flexible to handle any Cloud? What is the customers, what are they looking at? Basically, that's my question. What's the customer looking at? >> Cost is super important here and many of the companies, I mean, companies are spending a huge amount on their Cloud computing, on AWS, and on doing AI, right. And I think a lot of the advantage of Anyscale, what we can provide here is not only better performance, but cost efficiency. Because if we can run something faster and more efficiently, it can also use less resources and you can lower your Cloud spending, right. We've seen companies go from, you know, 20% GPU utilization with their current setup and the current tools they're using to running on Anyscale and getting more like 95, you know, 100% GPU utilization. That's something like a five x improvement right there. So depending on the kind of application you're running, you know, it's a significant cost savings. We've seen companies that have, you know, processing petabytes of data every single day with Ray going from, you know, getting order of magnitude cost savings by switching from what they were previously doing to running their application on Ray. And when you have applications that are spending, you know, potentially $100 million a year and getting a 10 X cost savings is just absolutely enormous. So these are some of the kinds of- >> Data infrastructure is super important. Again, if the customer, if you're a prospect to this and thinking about going in here, just like the Cloud, you got infrastructure, you got the platform, you got SaaS, same kind of thing's going to go on in AI. So I want to get into that, you know, ROI discussion and some of the impact with your customers that are leveraging the platform. But first I hear you got a demo. >> Robert: Yeah, so let me show you, let me give you a quick run through here. So what I have open here is the Anyscale UI. I've started a little Anyscale Workspace. So Workspaces are the Anyscale concept for interactive developments, right. So here, imagine I'm just, you want to have a familiar experience like you're developing on your laptop. And here I have a terminal. It's not on my laptop. It's actually in the cloud running on Anyscale. And I'm just going to kick this off. This is going to train a large language model, so OPT. And it's doing this on 32 GPUs. We've got a cluster here with a bunch of CPU cores, bunch of memory. And as that's running, and by the way, if I wanted to run this on instead of 32 GPUs, 64, 128, this is just a one line change when I launch the Workspace. And what I can do is I can pull up VS code, right. Remember this is the interactive development experience. I can look at the actual code. Here it's using Ray train to train the torch model. We've got the training loop and we're saying that each worker gets access to one GPU and four CPU cores. And, of course, as I make the model larger, this is using deep speed, as I make the model larger, I could increase the number of GPUs that each worker gets access to, right. And how that is distributed across the cluster. And if I wanted to run on CPUs instead of GPUs or a different, you know, accelerator type, again, this is just a one line change. And here we're using Ray train to train the models, just taking my vanilla PyTorch model using Hugging Face and then scaling that across a bunch of GPUs. And, of course, if I want to look at the dashboard, I can go to the Ray dashboard. There are a bunch of different visualizations I can look at. I can look at the GPU utilization. I can look at, you know, the CPU utilization here where I think we're currently loading the model and running that actual application to start the training. And some of the things that are really convenient here about Anyscale, both I can get that interactive development experience with VS code. You know, I can look at the dashboards. I can monitor what's going on. It feels, I have a terminal, it feels like my laptop, but it's actually running on a large cluster. And I can, with however many GPUs or other resources that I want. And so it's really trying to combine the best of having the familiar experience of programming on your laptop, but with the benefits, you know, being able to take advantage of all the resources in the Cloud to scale. And it's like when, you know, you're talking about cost efficiency. One of the biggest reasons that people waste money, one of the silly reasons for wasting money is just forgetting to turn off your GPUs. And what you can do here is, of course, things will auto terminate if they're idle. But imagine you go to sleep, I have this big cluster. You can turn it off, shut off the cluster, come back tomorrow, restart the Workspace, and you know, your big cluster is back up and all of your code changes are still there. All of your local file edits. It's like you just closed your laptop and came back and opened it up again. And so this is the kind of experience we want to provide for our users. So that's what I wanted to share with you. >> Well, I think that whole, couple of things, lines of code change, single line of code change, that's game changing. And then the cost thing, I mean human error is a big deal. People pass out at their computer. They've been coding all night or they just forget about it. I mean, and then it's just like leaving the lights on or your water running in your house. It's just, at the scale that it is, the numbers will add up. That's a huge deal. So I think, you know, compute back in the old days, there's no compute. Okay, it's just compute sitting there idle. But you know, data cranking the models is doing, that's a big point. >> Another thing I want to add there about cost efficiency is that we make it really easy to use, if you're running on Anyscale, to use spot instances and these preemptable instances that can just be significantly cheaper than the on-demand instances. And so when we see our customers go from what they're doing before to using Anyscale and they go from not using these spot instances 'cause they don't have the infrastructure around it, the fault tolerance to handle the preemption and things like that, to being able to just check a box and use spot instances and save a bunch of money. >> You know, this was my whole, my feature article at Reinvent last year when I met with Adam Selipsky, this next gen Cloud is here. I mean, it's not auto scale, it's infrastructure scale. It's agility. It's flexibility. I think this is where the world needs to go. Almost what DevOps did for Cloud and what you were showing me that demo had this whole SRE vibe. And remember Google had site reliability engines to manage all those servers. This is kind of like an SRE vibe for data at scale. I mean, a similar kind of order of magnitude. I mean, I might be a little bit off base there, but how would you explain it? >> It's a nice analogy. I mean, what we are trying to do here is get to the point where developers don't think about infrastructure. Where developers only think about their application logic. And where businesses can do AI, can succeed with AI, and build these scalable applications, but they don't have to build, you know, an infrastructure team. They don't have to develop that expertise. They don't have to invest years in building their internal machine learning infrastructure. They can just focus on the Python code, on their application logic, and run the stuff out of the box. >> Awesome. Well, I appreciate the time. Before we wrap up here, give a plug for the company. I know you got a couple websites. Again, go, Ray's got its own website. You got Anyscale. You got an event coming up. Give a plug for the company looking to hire. Put a plug in for the company. >> Yeah, absolutely. Thank you. So first of all, you know, we think AI is really going to transform every industry and the opportunity is there, right. We can be the infrastructure that enables all of that to happen, that makes it easy for companies to succeed with AI, and get value out of AI. Now we have, if you're interested in learning more about Ray, Ray has been emerging as the standard way to build scalable applications. Our adoption has been exploding. I mentioned companies like OpenAI using Ray to train their models. But really across the board companies like Netflix and Cruise and Instacart and Lyft and Uber, you know, just among tech companies. It's across every industry. You know, gaming companies, agriculture, you know, farming, robotics, drug discovery, you know, FinTech, we see it across the board. And all of these companies can get value out of AI, can really use AI to improve their businesses. So if you're interested in learning more about Ray and Anyscale, we have our Ray Summit coming up in September. This is going to highlight a lot of the most impressive use cases and stories across the industry. And if your business, if you want to use LLMs, you want to train these LLMs, these large language models, you want to fine tune them with your data, you want to deploy them, serve them, and build applications and products around them, give us a call, talk to us. You know, we can really take the infrastructure piece, you know, off the critical path and make that easy for you. So that's what I would say. And, you know, like you mentioned, we're hiring across the board, you know, engineering, product, go-to-market, and it's an exciting time. >> Robert Nishihara, co-founder and CEO of Anyscale, congratulations on a great company you've built and continuing to iterate on and you got growth ahead of you, you got a tailwind. I mean, the AI wave is here. I think OpenAI and ChatGPT, a customer of yours, have really opened up the mainstream visibility into this new generation of applications, user interface, roll of data, large scale, how to make that programmable so we're going to need that infrastructure. So thanks for coming on this season three, episode one of the ongoing series of the hot startups. In this case, this episode is the top startups building foundational model infrastructure for AI and ML. I'm John Furrier, your host. Thanks for watching. (upbeat music)

Published Date : Mar 9 2023

SUMMARY :

episode one of the ongoing and you guys really had and other resources in the Cloud. and particular the large language and what you want to achieve. and the Cloud did that with data centers. the point, and you know, if you don't mind explaining and managing the infrastructure and you guys are positioning is that the amount of compute needed to do But John, I'm curious what you think. because that's the platform So you got tools in the platform. and being the best way to of the computer industry, Did you have an inside prompt and the large language models and tell it what you want it to do. So I have to ask you and you can lower your So I want to get into that, you know, and you know, your big cluster is back up So I think, you know, the on-demand instances. and what you were showing me that demo and run the stuff out of the box. I know you got a couple websites. and the opportunity is there, right. and you got growth ahead

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Robert NishiharaPERSON

0.99+

JohnPERSON

0.99+

RobertPERSON

0.99+

John FurrierPERSON

0.99+

NetflixORGANIZATION

0.99+

35 timesQUANTITY

0.99+

AmazonORGANIZATION

0.99+

$100 millionQUANTITY

0.99+

UberORGANIZATION

0.99+

AWSORGANIZATION

0.99+

100%QUANTITY

0.99+

GoogleORGANIZATION

0.99+

Ant GroupORGANIZATION

0.99+

firstQUANTITY

0.99+

PythonTITLE

0.99+

20%QUANTITY

0.99+

32 GPUsQUANTITY

0.99+

LyftORGANIZATION

0.99+

hundredsQUANTITY

0.99+

tomorrowDATE

0.99+

AnyscaleORGANIZATION

0.99+

threeQUANTITY

0.99+

128QUANTITY

0.99+

SeptemberDATE

0.99+

todayDATE

0.99+

Moore's LawTITLE

0.99+

Adam SelipskyPERSON

0.99+

PyTorchTITLE

0.99+

RayORGANIZATION

0.99+

second reasonQUANTITY

0.99+

64QUANTITY

0.99+

each workerQUANTITY

0.99+

each workerQUANTITY

0.99+

PhotoshopTITLE

0.99+

UC BerkeleyORGANIZATION

0.99+

JavaTITLE

0.99+

ShopifyORGANIZATION

0.99+

OpenAIORGANIZATION

0.99+

AnyscalePERSON

0.99+

thirdQUANTITY

0.99+

two thingsQUANTITY

0.99+

ByteDanceORGANIZATION

0.99+

SpotifyORGANIZATION

0.99+

OneQUANTITY

0.99+

95QUANTITY

0.99+

AsureORGANIZATION

0.98+

one lineQUANTITY

0.98+

one GPUQUANTITY

0.98+

ChatGPTTITLE

0.98+

TensorFlowTITLE

0.98+

last yearDATE

0.98+

first bucketQUANTITY

0.98+

bothQUANTITY

0.98+

two layersQUANTITY

0.98+

CohereORGANIZATION

0.98+

AlipayORGANIZATION

0.98+

RayPERSON

0.97+

oneQUANTITY

0.97+

InstacartORGANIZATION

0.97+

SiliconANGLE News | Beyond the Buzz: A deep dive into the impact of AI


 

(upbeat music) >> Hello, everyone, welcome to theCUBE. I'm John Furrier, the host of theCUBE in Palo Alto, California. Also it's SiliconANGLE News. Got two great guests here to talk about AI, the impact of the future of the internet, the applications, the people. Amr Awadallah, the founder and CEO, Ed Alban is the CEO of Vectara, a new startup that emerged out of the original Cloudera, I would say, 'cause Amr's known, famous for the Cloudera founding, which was really the beginning of the big data movement. And now as AI goes mainstream, there's so much to talk about, so much to go on. And plus the new company is one of the, now what I call the wave, this next big wave, I call it the fifth wave in the industry. You know, you had PCs, you had the internet, you had mobile. This generative AI thing is real. And you're starting to see startups come out in droves. Amr obviously was founder of Cloudera, Big Data, and now Vectara. And Ed Albanese, you guys have a new company. Welcome to the show. >> Thank you. It's great to be here. >> So great to see you. Now the story is theCUBE started in the Cloudera office. Thanks to you, and your friendly entrepreneurship views that you have. We got to know each other over the years. But Cloudera had Hadoop, which was the beginning of what I call the big data wave, which then became what we now call data lakes, data oceans, and data infrastructure that's developed from that. It's almost interesting to look back 12 plus years, and see that what AI is doing now, right now, is opening up the eyes to the mainstream, and the application's almost mind blowing. You know, Sati Natel called it the Mosaic Moment, didn't say Netscape, he built Netscape (laughing) but called it the Mosaic Moment. You're seeing companies in startups, kind of the alpha geeks running here, because this is the new frontier, and there's real meat on the bone, in terms of like things to do. Why? Why is this happening now? What's is the confluence of the forces happening, that are making this happen? >> Yeah, I mean if you go back to the Cloudera days, with big data, and so on, that was more about data processing. Like how can we process data, so we can extract numbers from it, and do reporting, and maybe take some actions, like this is a fraud transaction, or this is not. And in the meanwhile, many of the researchers working in the neural network, and deep neural network space, were trying to focus on data understanding, like how can I understand the data, and learn from it, so I can take actual actions, based on the data directly, just like a human does. And we were only good at doing that at the level of somebody who was five years old, or seven years old, all the way until about 2013. And starting in 2013, which is only 10 years ago, a number of key innovations started taking place, and each one added on. It was no major innovation that just took place. It was a couple of really incremental ones, but they added on top of each other, in a very exponentially additive way, that led to, by the end of 2019, we now have models, deep neural network models, that can read and understand human text just like we do. Right? And they can reason about it, and argue with you, and explain it to you. And I think that's what is unlocking this whole new wave of innovation that we're seeing right now. So data understanding would be the essence of it. >> So it's not a Big Bang kind of theory, it's been evolving over time, and I think that the tipping point has been the advancements and other things. I mean look at cloud computing, and look how fast it just crept up on AWS. I mean AWS you back three, five years ago, I was talking to Swami yesterday, and their big news about AI, expanding the Hugging Face's relationship with AWS. And just three, five years ago, there wasn't a model training models out there. But as compute comes out, and you got more horsepower,, these large language models, these foundational models, they're flexible, they're not monolithic silos, they're interacting. There's a whole new, almost fusion of data happening. Do you see that? I mean is that part of this? >> Of course, of course. I mean this wave is building on all the previous waves. We wouldn't be at this point if we did not have hardware that can scale, in a very efficient way. We wouldn't be at this point, if we don't have data that we're collecting about everything we do, that we're able to process in this way. So this, this movement, this motion, this phase we're in, absolutely builds on the shoulders of all the previous phases. For some of the observers from the outside, when they see chatGPT for the first time, for them was like, "Oh my god, this just happened overnight." Like it didn't happen overnight. (laughing) GPT itself, like GPT3, which is what chatGPT is based on, was released a year ahead of chatGPT, and many of us were seeing the power it can provide, and what it can do. I don't know if Ed agrees with that. >> Yeah, Ed? >> I do. Although I would acknowledge that the possibilities now, because of what we've hit from a maturity standpoint, have just opened up in an incredible way, that just wasn't tenable even three years ago. And that's what makes it, it's true that it developed incrementally, in the same way that, you know, the possibilities of a mobile handheld device, you know, in 2006 were there, but when the iPhone came out, the possibilities just exploded. And that's the moment we're in. >> Well, I've had many conversations over the past couple months around this area with chatGPT. John Markoff told me the other day, that he calls it, "The five dollar toy," because it's not that big of a deal, in context to what AI's doing behind the scenes, and all the work that's done on ethics, that's happened over the years, but it has woken up the mainstream, so everyone immediately jumps to ethics. "Does it work? "It's not factual," And everyone who's inside the industry is like, "This is amazing." 'Cause you have two schools of thought there. One's like, people that think this is now the beginning of next gen, this is now we're here, this ain't your grandfather's chatbot, okay?" With NLP, it's got reasoning, it's got other things. >> I'm in that camp for sure. >> Yeah. Well I mean, everyone who knows what's going on is in that camp. And as the naysayers start to get through this, and they go, "Wow, it's not just plagiarizing homework, "it's helping me be better. "Like it could rewrite my memo, "bring the lead to the top." It's so the format of the user interface is interesting, but it's still a data-driven app. >> Absolutely. >> So where does it go from here? 'Cause I'm not even calling this the first ending. This is like pregame, in my opinion. What do you guys see this going, in terms of scratching the surface to what happens next? >> I mean, I'll start with, I just don't see how an application is going to look the same in the next three years. Who's going to want to input data manually, in a form field? Who is going to want, or expect, to have to put in some text in a search box, and then read through 15 different possibilities, and try to figure out which one of them actually most closely resembles the question they asked? You know, I don't see that happening. Who's going to start with an absolute blank sheet of paper, and expect no help? That is not how an application will work in the next three years, and it's going to fundamentally change how people interact and spend time with opening any element on their mobile phone, or on their computer, to get something done. >> Yes. I agree with that. Like every single application, over the next five years, will be rewritten, to fit within this model. So imagine an HR application, I don't want to name companies, but imagine an HR application, and you go into application and you clicking on buttons, because you want to take two weeks of vacation, and menus, and clicking here and there, reasons and managers, versus just telling the system, "I'm taking two weeks of vacation, going to Las Vegas," book it, done. >> Yeah. >> And the system just does it for you. If you weren't completing in your input, in your description, for what you want, then the system asks you back, "Did you mean this? "Did you mean that? "Were you trying to also do this as well?" >> Yeah. >> "What was the reason?" And that will fit it for you, and just do it for you. So I think the user interface that we have with apps, is going to change to be very similar to the user interface that we have with each other. And that's why all these apps will need to evolve. >> I know we don't have a lot of time, 'cause you guys are very busy, but I want to definitely have multiple segments with you guys, on this topic, because there's so much to talk about. There's a lot of parallels going on here. I was talking again with Swami who runs all the AI database at AWS, and I asked him, I go, "This feels a lot like the original AWS. "You don't have to provision a data center." A lot of this heavy lifting on the back end, is these large language models, with these foundational models. So the bottleneck in the past, was the energy, and cost to actually do it. Now you're seeing it being stood up faster. So there's definitely going to be a tsunami of apps. I would see that clearly. What is it? We don't know yet. But also people who are going to leverage the fact that I can get started building value. So I see a startup boom coming, and I see an application tsunami of refactoring things. >> Yes. >> So the replatforming is already kind of happening. >> Yes, >> OpenAI, chatGPT, whatever. So that's going to be a developer environment. I mean if Amazon turns this into an API, or a Microsoft, what you guys are doing. >> We're turning it into API as well. That's part of what we're doing as well, yes. >> This is why this is exciting. Amr, you've lived the big data dream, and and we used to talk, if you didn't have a big data problem, if you weren't full of data, you weren't really getting it. Now people have all the data, and they got to stand this up. >> Yeah. >> So the analogy is again, the mobile, I like the mobile movement, and using mobile as an analogy, most companies were not building for a mobile environment, right? They were just building for the web, and legacy way of doing apps. And as soon as the user expectations shifted, that my expectation now, I need to be able to do my job on this small screen, on the mobile device with a touchscreen. Everybody had to invest in re-architecting, and re-implementing every single app, to fit within that model, and that model of interaction. And we are seeing the exact same thing happen now. And one of the core things we're focused on at Vectara, is how to simplify that for organizations, because a lot of them are overwhelmed by large language models, and ML. >> They don't have the staff. >> Yeah, yeah, yeah. They're understaffed, they don't have the skills. >> But they got developers, they've got DevOps, right? >> Yes. >> So they have the DevSecOps going on. >> Exactly, yes. >> So our goal is to simplify it enough for them that they can start leveraging this technology effectively, within their applications. >> Ed, you're the COO of the company, obviously a startup. You guys are growing. You got great backup, and good team. You've also done a lot of business development, and technical business development in this area. If you look at the landscape right now, and I agree the apps are coming, every company I talk to, that has that jet chatGPT of, you know, epiphany, "Oh my God, look how cool this is. "Like magic." Like okay, it's code, settle down. >> Mm hmm. >> But everyone I talk to is using it in a very horizontal way. I talk to a very senior person, very tech alpha geek, very senior person in the industry, technically. they're using it for log data, they're using it for configuration of routers. And in other areas, they're using it for, every vertical has a use case. So this is horizontally scalable from a use case standpoint. When you hear horizontally scalable, first thing I chose in my mind is cloud, right? >> Mm hmm. >> So cloud, and scalability that way. And the data is very specialized. So now you have this vertical specialization, horizontally scalable, everyone will be refactoring. What do you see, and what are you seeing from customers, that you talk to, and prospects? >> Yeah, I mean put yourself in the shoes of an application developer, who is actually trying to make their application a bit more like magic. And to have that soon-to-be, honestly, expected experience. They've got to think about things like performance, and how efficiently that they can actually execute a query, or a question. They've got to think about cost. Generative isn't cheap, like the inference of it. And so you've got to be thoughtful about how and when you take advantage of it, you can't use it as a, you know, everything looks like a nail, and I've got a hammer, and I'm going to hit everything with it, because that will be wasteful. Developers also need to think about how they're going to take advantage of, but not lose their own data. So there has to be some controls around what they feed into the large language model, if anything. Like, should they fine tune a large language model with their own data? Can they keep it logically separated, but still take advantage of the powers of a large language model? And they've also got to take advantage, and be aware of the fact that when data is generated, that it is a different class of data. It might not fully be their own. >> Yeah. >> And it may not even be fully verified. And so when the logical cycle starts, of someone making a request, the relationship between that request, and the output, those things have to be stored safely, logically, and identified as such. >> Yeah. >> And taken advantage of in an ongoing fashion. So these are mega problems, each one of them independently, that, you know, you can think of it as middleware companies need to take advantage of, and think about, to help the next wave of application development be logical, sensible, and effective. It's not just calling some raw API on the cloud, like openAI, and then just, you know, you get your answer and you're done, because that is a very brute force approach. >> Well also I will point, first of all, I agree with your statement about the apps experience, that's going to be expected, form filling. Great point. The interesting about chatGPT. >> Sorry, it's not just form filling, it's any action you would like to take. >> Yeah. >> Instead of clicking, and dragging, and dropping, and doing it on a menu, or on a touch screen, you just say it, and it's and it happens perfectly. >> Yeah. It's a different interface. And that's why I love that UIUX experiences, that's the people falling out of their chair moment with chatGPT, right? But a lot of the things with chatGPT, if you feed it right, it works great. If you feed it wrong and it goes off the rails, it goes off the rails big. >> Yes, yes. >> So the the Bing catastrophes. >> Yeah. >> And that's an example of garbage in, garbage out, classic old school kind of comp-side phrase that we all use. >> Yep. >> Yes. >> This is about data in injection, right? It reminds me the old SQL days, if you had to, if you can sling some SQL, you were a magician, you know, to get the right answer, it's pretty much there. So you got to feed the AI. >> You do, Some people call this, the early word to describe this as prompt engineering. You know, old school, you know, search, or, you know, engagement with data would be, I'm going to, I have a question or I have a query. New school is, I have, I have to issue it a prompt, because I'm trying to get, you know, an action or a reaction, from the system. And the active engineering, there are a lot of different ways you could do it, all the way from, you know, raw, just I'm going to send you whatever I'm thinking. >> Yeah. >> And you get the unintended outcomes, to more constrained, where I'm going to just use my own data, and I'm going to constrain the initial inputs, the data I already know that's first party, and I trust, to, you know, hyper constrain, where the application is actually, it's looking for certain elements to respond to. >> It's interesting Amr, this is why I love this, because one we are in the media, we're recording this video now, we'll stream it. But we got all your linguistics, we're talking. >> Yes. >> This is data. >> Yep. >> So the data quality becomes now the new intellectual property, because, if you have that prompt source data, it makes data or content, in our case, the original content, intellectual property. >> Absolutely. >> Because that's the value. And that's where you see chatGPT fall down, is because they're trying to scroll the web, and people think it's search. It's not necessarily search, it's giving you something that you wanted. It is a lot of that, I remember in Cloudera, you said, "Ask the right questions." Remember that phrase you guys had, that slogan? >> Mm hmm. And that's prompt engineering. So that's exactly, that's the reinvention of "Ask the right question," is prompt engineering is, if you don't give these models the question in the right way, and very few people know how to frame it in the right way with the right context, then you will get garbage out. Right? That is the garbage in, garbage out. But if you specify the question correctly, and you provide with it the metadata that constrain what that question is going to be acted upon or answered upon, then you'll get much better answers. And that's exactly what we solved Vectara. >> Okay. So before we get into the last couple minutes we have left, I want to make sure we get a plug in for the opportunity, and the profile of Vectara, your new company. Can you guys both share with me what you think the current situation is? So for the folks who are now having those moments of, "Ah, AI's bullshit," or, "It's not real, it's a lot of stuff," from, "Oh my god, this is magic," to, "Okay, this is the future." >> Yes. >> What would you say to that person, if you're at a cocktail party, or in the elevator say, "Calm down, this is the first inning." How do you explain the dynamics going on right now, to someone who's either in the industry, but not in the ropes? How would you explain like, what this wave's about? How would you describe it, and how would you prepare them for how to change their life around this? >> Yeah, so I'll go first and then I'll let Ed go. Efficiency, efficiency is the description. So we figured that a way to be a lot more efficient, a way where you can write a lot more emails, create way more content, create way more presentations. Developers can develop 10 times faster than they normally would. And that is very similar to what happened during the Industrial Revolution. I always like to look at examples from the past, to read what will happen now, and what will happen in the future. So during the Industrial Revolution, it was about efficiency with our hands, right? So I had to make a piece of cloth, like this piece of cloth for this shirt I'm wearing. Our ancestors, they had to spend month taking the cotton, making it into threads, taking the threads, making them into pieces of cloth, and then cutting it. And now a machine makes it just like that, right? And the ancestors now turned from the people that do the thing, to manage the machines that do the thing. And I think the same thing is going to happen now, is our efficiency will be multiplied extremely, as human beings, and we'll be able to do a lot more. And many of us will be able to do things they couldn't do before. So another great example I always like to use is the example of Google Maps, and GPS. Very few of us knew how to drive a car from one location to another, and read a map, and get there correctly. But once that efficiency of an AI, by the way, behind these things is very, very complex AI, that figures out how to do that for us. All of us now became amazing navigators that can go from any point to any point. So that's kind of how I look at the future. >> And that's a great real example of impact. Ed, your take on how you would talk to a friend, or colleague, or anyone who asks like, "How do I make sense of the current situation? "Is it real? "What's in it for me, and what do I do?" I mean every company's rethinking their business right now, around this. What would you say to them? >> You know, I usually like to show, rather than describe. And so, you know, the other day I just got access, I've been using an application for a long time, called Notion, and it's super popular. There's like 30 or 40 million users. And the new version of Notion came out, which has AI embedded within it. And it's AI that allows you primarily to create. So if you could break down the world of AI into find and create, for a minute, just kind of logically separate those two things, find is certainly going to be massively impacted in our experiences as consumers on, you know, Google and Bing, and I can't believe I just said the word Bing in the same sentence as Google, but that's what's happening now (all laughing), because it's a good example of change. >> Yes. >> But also inside the business. But on the crate side, you know, Notion is a wiki product, where you try to, you know, note down things that you are thinking about, or you want to share and memorialize. But sometimes you do need help to get it down fast. And just in the first day of using this new product, like my experience has really fundamentally changed. And I think that anybody who would, you know, anybody say for example, that is using an existing app, I would show them, open up the app. Now imagine the possibility of getting a starting point right off the bat, in five seconds of, instead of having to whole cloth draft this thing, imagine getting a starting point then you can modify and edit, or just dispose of and retry again. And that's the potential for me. I can't imagine a scenario where, in a few years from now, I'm going to be satisfied if I don't have a little bit of help, in the same way that I don't manually spell check every email that I send. I automatically spell check it. I love when I'm getting type ahead support inside of Google, or anything. Doesn't mean I always take it, or when texting. >> That's efficiency too. I mean the cloud was about developers getting stuff up quick. >> Exactly. >> All that heavy lifting is there for you, so you don't have to do it. >> Right? >> And you get to the value faster. >> Exactly. I mean, if history taught us one thing, it's, you have to always embrace efficiency, and if you don't fast enough, you will fall behind. Again, looking at the industrial revolution, the companies that embraced the industrial revolution, they became the leaders in the world, and the ones who did not, they all like. >> Well the AI thing that we got to watch out for, is watching how it goes off the rails. If it doesn't have the right prompt engineering, or data architecture, infrastructure. >> Yes. >> It's a big part. So this comes back down to your startup, real quick, I know we got a couple minutes left. Talk about the company, the motivation, and we'll do a deeper dive on on the company. But what's the motivation? What are you targeting for the market, business model? The tech, let's go. >> Actually, I would like Ed to go first. Go ahead. >> Sure, I mean, we're a developer-first, API-first platform. So the product is oriented around allowing developers who may not be superstars, in being able to either leverage, or choose, or select their own large language models for appropriate use cases. But they that want to be able to instantly add the power of large language models into their application set. We started with search, because we think it's going to be one of the first places that people try to take advantage of large language models, to help find information within an application context. And we've built our own large language models, focused on making it very efficient, and elegant, to find information more quickly. So what a developer can do is, within minutes, go up, register for an account, and get access to a set of APIs, that allow them to send data, to be converted into a format that's easy to understand for large language models, vectors. And then secondarily, they can issue queries, ask questions. And they can ask them very, the questions that can be asked, are very natural language questions. So we're talking about long form sentences, you know, drill down types of questions, and they can get answers that either come back in depending upon the form factor of the user interface, in list form, or summarized form, where summarized equals the opportunity to kind of see a condensed, singular answer. >> All right. I have a. >> Oh okay, go ahead, you go. >> I was just going to say, I'm going to be a customer for you, because I want, my dream was to have a hologram of theCUBE host, me and Dave, and have questions be generated in the metaverse. So you know. (all laughing) >> There'll be no longer any guests here. They'll all be talking to you guys. >> Give a couple bullets, I'll spit out 10 good questions. Publish a story. This brings the automation, I'm sorry to interrupt you. >> No, no. No, no, I was just going to follow on on the same. So another way to look at exactly what Ed described is, we want to offer you chatGPT for your own data, right? So imagine taking all of the recordings of all of the interviews you have done, and having all of the content of that being ingested by a system, where you can now have a conversation with your own data and say, "Oh, last time when I met Amr, "which video games did we talk about? "Which movie or book did we use as an analogy "for how we should be embracing data science, "and big data, which is moneyball," I know you use moneyball all the time. And you start having that conversation. So, now the data doesn't become a passive asset that you just have in your organization. No. It's an active participant that's sitting with you, on the table, helping you make decisions. >> One of my favorite things to do with customers, is to go to their site or application, and show them me using it. So for example, one of the customers I talked to was one of the biggest property management companies in the world, that lets people go and rent homes, and houses, and things like that. And you know, I went and I showed them me searching through reviews, looking for information, and trying different words, and trying to find out like, you know, is this place quiet? Is it comfortable? And then I put all the same data into our platform, and I showed them the world of difference you can have when you start asking that question wholeheartedly, and getting real information that doesn't have anything to do with the words you asked, but is really focused on the meaning. You know, when I asked like, "Is it quiet?" You know, answers would come back like, "The wind whispered through the trees peacefully," and you know, it's like nothing to do with quiet in the literal word sense, but in the meaning sense, everything to do with it. And that that was magical even for them, to see that. >> Well you guys are the front end of this big wave. Congratulations on the startup, Amr. I know you guys got great pedigree in big data, and you've got a great team, and congratulations. Vectara is the name of the company, check 'em out. Again, the startup boom is coming. This will be one of the major waves, generative AI is here. I think we'll look back, and it will be pointed out as a major inflection point in the industry. >> Absolutely. >> There's not a lot of hype behind that. People are are seeing it, experts are. So it's going to be fun, thanks for watching. >> Thanks John. (soft music)

Published Date : Feb 23 2023

SUMMARY :

I call it the fifth wave in the industry. It's great to be here. and the application's almost mind blowing. And in the meanwhile, and you got more horsepower,, of all the previous phases. in the same way that, you know, and all the work that's done on ethics, "bring the lead to the top." in terms of scratching the surface and it's going to fundamentally change and you go into application And the system just does it for you. is going to change to be very So the bottleneck in the past, So the replatforming is So that's going to be a That's part of what and they got to stand this up. And one of the core things don't have the skills. So our goal is to simplify it and I agree the apps are coming, I talk to a very senior And the data is very specialized. and be aware of the fact that request, and the output, some raw API on the cloud, about the apps experience, it's any action you would like to take. you just say it, and it's But a lot of the things with chatGPT, comp-side phrase that we all use. It reminds me the old all the way from, you know, raw, and I'm going to constrain But we got all your So the data quality And that's where you That is the garbage in, garbage out. So for the folks who are and how would you prepare them that do the thing, to manage the current situation? And the new version of Notion came out, But on the crate side, you I mean the cloud was about developers so you don't have to do it. and the ones who did not, they all like. If it doesn't have the So this comes back down to Actually, I would like Ed to go first. factor of the user interface, I have a. generated in the metaverse. They'll all be talking to you guys. This brings the automation, of all of the interviews you have done, one of the customers I talked to Vectara is the name of the So it's going to be fun, Thanks John.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
John MarkoffPERSON

0.99+

2013DATE

0.99+

AWSORGANIZATION

0.99+

Ed AlbanPERSON

0.99+

AmazonORGANIZATION

0.99+

30QUANTITY

0.99+

10 timesQUANTITY

0.99+

2006DATE

0.99+

John FurrierPERSON

0.99+

two weeksQUANTITY

0.99+

MicrosoftORGANIZATION

0.99+

DavePERSON

0.99+

Ed AlbanesePERSON

0.99+

JohnPERSON

0.99+

five secondsQUANTITY

0.99+

Las VegasLOCATION

0.99+

EdPERSON

0.99+

iPhoneCOMMERCIAL_ITEM

0.99+

10 good questionsQUANTITY

0.99+

SwamiPERSON

0.99+

15 different possibilitiesQUANTITY

0.99+

Palo Alto, CaliforniaLOCATION

0.99+

VectaraORGANIZATION

0.99+

Amr AwadallahPERSON

0.99+

GoogleORGANIZATION

0.99+

ClouderaORGANIZATION

0.99+

first timeQUANTITY

0.99+

bothQUANTITY

0.99+

end of 2019DATE

0.99+

yesterdayDATE

0.98+

Big DataORGANIZATION

0.98+

40 million usersQUANTITY

0.98+

two thingsQUANTITY

0.98+

two great guestsQUANTITY

0.98+

12 plus yearsQUANTITY

0.98+

oneQUANTITY

0.98+

five dollarQUANTITY

0.98+

NetscapeORGANIZATION

0.98+

five years agoDATE

0.98+

SQLTITLE

0.98+

first inningQUANTITY

0.98+

AmrPERSON

0.97+

two schoolsQUANTITY

0.97+

firstQUANTITY

0.97+

10 years agoDATE

0.97+

OneQUANTITY

0.96+

first dayQUANTITY

0.96+

threeDATE

0.96+

chatGPTTITLE

0.96+

first placesQUANTITY

0.95+

BingORGANIZATION

0.95+

NotionTITLE

0.95+

first thingQUANTITY

0.94+

theCUBEORGANIZATION

0.94+

Beyond the BuzzTITLE

0.94+

Sati NatelPERSON

0.94+

Industrial RevolutionEVENT

0.93+

one locationQUANTITY

0.93+

three years agoDATE

0.93+

single applicationQUANTITY

0.92+

one thingQUANTITY

0.91+

first platformQUANTITY

0.91+

five years oldQUANTITY

0.91+

SiliconANGLE News | Swami Sivasubramanian Extended Version


 

(bright upbeat music) >> Hello, everyone. Welcome to SiliconANGLE News breaking story here. Amazon Web Services expanding their relationship with Hugging Face, breaking news here on SiliconANGLE. I'm John Furrier, SiliconANGLE reporter, founder, and also co-host of theCUBE. And I have with me, Swami, from Amazon Web Services, vice president of database, analytics, machine learning with AWS. Swami, great to have you on for this breaking news segment on AWS's big news. Thanks for coming on and taking the time. >> Hey, John, pleasure to be here. >> You know- >> Looking forward to it. >> We've had many conversations on theCUBE over the years, we've watched Amazon really move fast into the large data modeling, SageMaker became a very smashing success, obviously you've been on this for a while. Now with ChatGPT OpenAI, a lot of buzz going mainstream, takes it from behind the curtain inside the ropes, if you will, in the industry to a mainstream. And so this is a big moment, I think, in the industry, I want to get your perspective, because your news with Hugging Face, I think is another tell sign that we're about to tip over into a new accelerated growth around making AI now application aware, application centric, more programmable, more API access. What's the big news about, with AWS Hugging Face, you know, what's going on with this announcement? >> Yeah. First of all, they're very excited to announce our expanded collaboration with Hugging Face, because with this partnership, our goal, as you all know, I mean, Hugging Face, I consider them like the GitHub for machine learning. And with this partnership, Hugging Face and AWS, we'll be able to democratize AI for a broad range of developers, not just specific deep AI startups. And now with this, we can accelerate the training, fine tuning and deployment of these large language models, and vision models from Hugging Face in the cloud. And the broader context, when you step back and see what customer problem we are trying to solve with this announcement, essentially if you see these foundational models, are used to now create like a huge number of applications, suggest like tech summarization, question answering, or search image generation, creative, other things. And these are all stuff we are seeing in the likes of these ChatGPT style applications. But there is a broad range of enterprise use cases that we don't even talk about. And it's because these kind of transformative, generative AI capabilities and models are not available to, I mean, millions of developers. And because either training these elements from scratch can be very expensive or time consuming and need deep expertise, or more importantly, they don't need these generic models, they need them to be fine tuned for the specific use cases. And one of the biggest complaints we hear is that these models, when they try to use it for real production use cases, they are incredibly expensive to train and incredibly expensive to run inference on, to use it at a production scale. So, and unlike web search style applications, where the margins can be really huge, here in production use cases and enterprises, you want efficiency at scale. That's where Hugging Face and AWS share our mission. And by integrating with Trainium and Inferentia, we're able to handle the cost efficient training and inference at scale, I'll deep dive on it. And by teaming up on the SageMaker front, now the time it takes to build these models and fine tune them is also coming down. So that's what makes this partnership very unique as well. So I'm very excited. >> I want to get into the time savings and the cost savings as well on the training and inference, it's a huge issue, but before we get into that, just how long have you guys been working with Hugging Face? I know there's a previous relationship, this is an expansion of that relationship, can you comment on what's different about what's happened before and then now? >> Yeah. So, Hugging Face, we have had a great relationship in the past few years as well, where they have actually made their models available to run on AWS, you know, fashion. Even in fact, their Bloom Project was something many of our customers even used. Bloom Project, for context, is their open source project which builds a GPT-3 style model. And now with this expanded collaboration, now Hugging Face selected AWS for that next generation office generative AI model, building on their highly successful Bloom Project as well. And the nice thing is, now, by direct integration with Trainium and Inferentia, where you get cost savings in a really significant way, now, for instance, Trn1 can provide up to 50% cost to train savings, and Inferentia can deliver up to 60% better costs, and four x more higher throughput than (indistinct). Now, these models, especially as they train that next generation generative AI models, it is going to be, not only more accessible to all the developers, who use it in open, so it'll be a lot cheaper as well. And that's what makes this moment really exciting, because we can't democratize AI unless we make it broadly accessible and cost efficient and easy to program and use as well. >> Yeah. >> So very exciting. >> I'll get into the SageMaker and CodeWhisperer angle in a second, but you hit on some good points there. One, accessibility, which is, I call the democratization, which is getting this in the hands of developers, and/or AI to develop, we'll get into that in a second. So, access to coding and Git reasoning is a whole nother wave. But the three things I know you've been working on, I want to put in the buckets here and comment, one, I know you've, over the years, been working on saving time to train, that's a big point, you mentioned some of those stats, also cost, 'cause now cost is an equation on, you know, bundling whether you're uncoupling with hardware and software, that's a big issue. Where do I find the GPUs? Where's the horsepower cost? And then also sustainability. You've mentioned that in the past, is there a sustainability angle here? Can you talk about those three things, time, cost, and sustainability? >> Certainly. So if you look at it from the AWS perspective, we have been supporting customers doing machine learning for the past years. Just for broader context, Amazon has been doing ML the past two decades right from the early days of ML powered recommendation to actually also supporting all kinds of generative AI applications. If you look at even generative AI application within Amazon, Amazon search, when you go search for a product and so forth, we have a team called MFi within Amazon search that helps bring these large language models into creating highly accurate search results. And these are created with models, really large models with tens of billions of parameters, scales to thousands of training jobs every month and trained on large model of hardware. And this is an example of a really good large language foundation model application running at production scale, and also, of course, Alexa, which uses a large generator model as well. And they actually even had a research paper that showed that they are more, and do better in accuracy than other systems like GPT-3 and whatnot. So, and we also touched on things like CodeWhisperer, which uses generative AI to improve developer productivity, but in a responsible manner, because 40% of some of the studies show 40% of this generated code had serious security flaws in it. This is where we didn't just do generative AI, we combined with automated reasoning capabilities, which is a very, very useful technique to identify these issues and couple them so that it produces highly secure code as well. Now, all these learnings taught us few things, and which is what you put in these three buckets. And yeah, like more than 100,000 customers using ML and AI services, including leading startups in the generative AI space, like stability AI, AI21 Labs, or Hugging Face, or even Alexa, for that matter. They care about, I put them in three dimension, one is around cost, which we touched on with Trainium and Inferentia, where we actually, the Trainium, you provide to 50% better cost savings, but the other aspect is, Trainium is a lot more power efficient as well compared to traditional one. And Inferentia is also better in terms of throughput, when it comes to what it is capable of. Like it is able to deliver up to three x higher compute performance and four x higher throughput, compared to it's previous generation, and it is extremely cost efficient and power efficient as well. >> Well. >> Now, the second element that really is important is in a day, developers deeply value the time it takes to build these models, and they don't want to build models from scratch. And this is where SageMaker, which is, even going to Kaggle uses, this is what it is, number one, enterprise ML platform. What it did to traditional machine learning, where tens of thousands of customers use StageMaker today, including the ones I mentioned, is that what used to take like months to build these models have dropped down to now a matter of days, if not less. Now, a generative AI, the cost of building these models, if you look at the landscape, the model parameter size had jumped by more than thousand X in the past three years, thousand x. And that means the training is like a really big distributed systems problem. How do you actually scale these model training? How do you actually ensure that you utilize these efficiently? Because these machines are very expensive, let alone they consume a lot of power. So, this is where SageMaker capability to build, automatically train, tune, and deploy models really concern this, especially with this distributor training infrastructure, and those are some of the reasons why some of the leading generative AI startups are actually leveraging it, because they do not want a giant infrastructure team, which is constantly tuning and fine tuning, and keeping these clusters alive. >> It sounds like a lot like what startups are doing with the cloud early days, no data center, you move to the cloud. So, this is the trend we're seeing, right? You guys are making it easier for developers with Hugging Face, I get that. I love that GitHub for machine learning, large language models are complex and expensive to build, but not anymore, you got Trainium and Inferentia, developers can get faster time to value, but then you got the transformers data sets, token libraries, all that optimized for generator. This is a perfect storm for startups. Jon Turow, a former AWS person, who used to work, I think for you, is now a VC at Madrona Venture, he and I were talking about the generator AI landscape, it's exploding with startups. Every alpha entrepreneur out there is seeing this as the next frontier, that's the 20 mile stairs, next 10 years is going to be huge. What is the big thing that's happened? 'Cause some people were saying, the founder of Yquem said, "Oh, the start ups won't be real, because they don't all have AI experience." John Markoff, former New York Times writer told me that, AI, there's so much work done, this is going to explode, accelerate really fast, because it's almost like it's been waiting for this moment. What's your reaction? >> I actually think there is going to be an explosion of startups, not because they need to be AI startups, but now finally AI is really accessible or going to be accessible, so that they can create remarkable applications, either for enterprises or for disrupting actually how customer service is being done or how creative tools are being built. And I mean, this is going to change in many ways. When we think about generative AI, we always like to think of how it generates like school homework or arts or music or whatnot, but when you look at it on the practical side, generative AI is being actually used across various industries. I'll give an example of like Autodesk. Autodesk is a customer who runs an AWS and SageMaker. They already have an offering that enables generated design, where designers can generate many structural designs for products, whereby you give a specific set of constraints and they actually can generate a structure accordingly. And we see similar kind of trend across various industries, where it can be around creative media editing or various others. I have the strong sense that literally, in the next few years, just like now, conventional machine learning is embedded in every application, every mobile app that we see, it is pervasive, and we don't even think twice about it, same way, like almost all apps are built on cloud. Generative AI is going to be part of every startup, and they are going to create remarkable experiences without needing actually, these deep generative AI scientists. But you won't get that until you actually make these models accessible. And I also don't think one model is going to rule the world, then you want these developers to have access to broad range of models. Just like, go back to the early days of deep learning. Everybody thought it is going to be one framework that will rule the world, and it has been changing, from Caffe to TensorFlow to PyTorch to various other things. And I have a suspicion, we had to enable developers where they are, so. >> You know, Dave Vellante and I have been riffing on this concept called super cloud, and a lot of people have co-opted to be multicloud, but we really were getting at this whole next layer on top of say, AWS. You guys are the most comprehensive cloud, you guys are a super cloud, and even Adam and I are talking about ISVs evolving to ecosystem partners. I mean, your top customers have ecosystems building on top of it. This feels like a whole nother AWS. How are you guys leveraging the history of AWS, which by the way, had the same trajectory, startups came in, they didn't want to provision a data center, the heavy lifting, all the things that have made Amazon successful culturally. And day one thinking is, provide the heavy lifting, undifferentiated heavy lifting, and make it faster for developers to program code. AI's got the same thing. How are you guys taking this to the next level, because now, this is an opportunity for the competition to change the game and take it over? This is, I'm sure, a conversation, you guys have a lot of things going on in AWS that makes you unique. What's the internal and external positioning around how you take it to the next level? >> I mean, so I agree with you that generative AI has a very, very strong potential in terms of what it can enable in terms of next generation application. But this is where Amazon's experience and expertise in putting these foundation models to work internally really has helped us quite a bit. If you look at it, like amazon.com search is like a very, very important application in terms of what is the customer impact on number of customers who use that application openly, and the amount of dollar impact it does for an organization. And we have been doing it silently for a while now. And the same thing is true for like Alexa too, which actually not only uses it for natural language understanding other city, even national leverages is set for creating stories and various other examples. And now, our approach to it from AWS is we actually look at it as in terms of the same three tiers like we did in machine learning, because when you look at generative AI, we genuinely see three sets of customers. One is, like really deep technical expert practitioner startups. These are the startups that are creating the next generation models like the likes of stability AIs or Hugging Face with Bloom or AI21. And they generally want to build their own models, and they want the best price performance of their infrastructure for training and inference. That's where our investments in silicon and hardware and networking innovations, where Trainium and Inferentia really plays a big role. And we can nearly do that, and that is one. The second middle tier is where I do think developers don't want to spend time building their own models, let alone, they actually want the model to be useful to that data. They don't need their models to create like high school homeworks or various other things. What they generally want is, hey, I had this data from my enterprises that I want to fine tune and make it really work only for this, and make it work remarkable, can be for tech summarization, to generate a report, or it can be for better Q&A, and so forth. This is where we are. Our investments in the middle tier with SageMaker, and our partnership with Hugging Face and AI21 and co here are all going to very meaningful. And you'll see us investing, I mean, you already talked about CodeWhisperer, which is an open preview, but we are also partnering with a whole lot of top ISVs, and you'll see more on this front to enable the next wave of generated AI apps too, because this is an area where we do think lot of innovation is yet to be done. It's like day one for us in this space, and we want to enable that huge ecosystem to flourish. >> You know, one of the things Dave Vellante and I were talking about in our first podcast we just did on Friday, we're going to do weekly, is we highlighted the AI ChatGPT example as a horizontal use case, because everyone loves it, people are using it in all their different verticals, and horizontal scalable cloud plays perfectly into it. So I have to ask you, as you look at what AWS is going to bring to the table, a lot's changed over the past 13 years with AWS, a lot more services are available, how should someone rebuild or re-platform and refactor their application of business with AI, with AWS? What are some of the tools that you see and recommend? Is it Serverless, is it SageMaker, CodeWhisperer? What do you think's going to shine brightly within the AWS stack, if you will, or service list, that's going to be part of this? As you mentioned, CodeWhisperer and SageMaker, what else should people be looking at as they start tinkering and getting all these benefits, and scale up their ups? >> You know, if we were a startup, first, I would really work backwards from the customer problem I try to solve, and pick and choose, bar, I don't need to deal with the undifferentiated heavy lifting, so. And that's where the answer is going to change. If you look at it then, the answer is not going to be like a one size fits all, so you need a very strong, I mean, granted on the compute front, if you can actually completely accurate it, so unless, I will always recommend it, instead of running compute for running your ups, because it takes care of all the undifferentiated heavy lifting, but on the data, and that's where we provide a whole variety of databases, right from like relational data, or non-relational, or dynamo, and so forth. And of course, we also have a deep analytical stack, where data directly flows from our relational databases into data lakes and data virus. And you can get value along with partnership with various analytical providers. The area where I do think fundamentally things are changing on what people can do is like, with CodeWhisperer, I was literally trying to actually program a code on sending a message through Twilio, and I was going to pull up to read a documentation, and in my ID, I was actually saying like, let's try sending a message to Twilio, or let's actually update a Route 53 error code. All I had to do was type in just a comment, and it actually started generating the sub-routine. And it is going to be a huge time saver, if I were a developer. And the goal is for us not to actually do it just for AWS developers, and not to just generate the code, but make sure the code is actually highly secure and follows the best practices. So, it's not always about machine learning, it's augmenting with automated reasoning as well. And generative AI is going to be changing, and not just in how people write code, but also how it actually gets built and used as well. You'll see a lot more stuff coming on this front. >> Swami, thank you for your time. I know you're super busy. Thank you for sharing on the news and giving commentary. Again, I think this is a AWS moment and industry moment, heavy lifting, accelerated value, agility. AIOps is going to be probably redefined here. Thanks for sharing your commentary. And we'll see you next time, I'm looking forward to doing more follow up on this. It's going to be a big wave. Thanks. >> Okay. Thanks again, John, always a pleasure. >> Okay. This is SiliconANGLE's breaking news commentary. I'm John Furrier with SiliconANGLE News, as well as host of theCUBE. Swami, who's a leader in AWS, has been on theCUBE multiple times. We've been tracking the growth of how Amazon's journey has just been exploding past five years, in particular, past three. You heard the numbers, great performance, great reviews. This is a watershed moment, I think, for the industry, and it's going to be a lot of fun for the next 10 years. Thanks for watching. (bright music)

Published Date : Feb 22 2023

SUMMARY :

Swami, great to have you on inside the ropes, if you And one of the biggest complaints we hear and easy to program and use as well. I call the democratization, the Trainium, you provide And that means the training What is the big thing that's happened? and they are going to create this to the next level, and the amount of dollar impact that's going to be part of this? And generative AI is going to be changing, AIOps is going to be John, always a pleasure. and it's going to be a lot

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

SwamiPERSON

0.99+

Amazon Web ServicesORGANIZATION

0.99+

Jon TurowPERSON

0.99+

John MarkoffPERSON

0.99+

AWSORGANIZATION

0.99+

JohnPERSON

0.99+

AmazonORGANIZATION

0.99+

John FurrierPERSON

0.99+

40%QUANTITY

0.99+

AutodeskORGANIZATION

0.99+

50%QUANTITY

0.99+

Madrona VentureORGANIZATION

0.99+

20 mileQUANTITY

0.99+

Hugging FaceORGANIZATION

0.99+

FridayDATE

0.99+

second elementQUANTITY

0.99+

more than 100,000 customersQUANTITY

0.99+

AI21ORGANIZATION

0.99+

tens of thousandsQUANTITY

0.99+

first podcastQUANTITY

0.99+

three tiersQUANTITY

0.98+

SiliconANGLEORGANIZATION

0.98+

twiceQUANTITY

0.98+

Bloom ProjectTITLE

0.98+

oneQUANTITY

0.98+

SageMakerORGANIZATION

0.98+

Hugging FaceTITLE

0.98+

AlexaTITLE

0.98+

firstQUANTITY

0.98+

GitHubORGANIZATION

0.98+

one modelQUANTITY

0.98+

up to 50%QUANTITY

0.97+

ChatGPTTITLE

0.97+

FirstQUANTITY

0.97+

more than thousand XQUANTITY

0.97+

amazon.comORGANIZATION

0.96+

tens of billionsQUANTITY

0.96+

OneQUANTITY

0.96+

up to 60%QUANTITY

0.96+

one frameworkQUANTITY

0.96+

YquemORGANIZATION

0.94+

three thingsQUANTITY

0.94+

InferentiaORGANIZATION

0.94+

CodeWhispererTITLE

0.93+

fourQUANTITY

0.92+

three setsQUANTITY

0.92+

threeQUANTITY

0.92+

TwilioORGANIZATION

0.92+

Breaking Analysis: We Have the Data…What Private Tech Companies Don’t Tell you About Their Business


 

>> From The Cube Studios in Palo Alto and Boston, bringing you data driven insights from The Cube at ETR. This is "Breaking Analysis" with Dave Vellante. >> The reverse momentum in tech stocks caused by rising interest rates, less attractive discounted cash flow models, and more tepid forward guidance, can be easily measured by public market valuations. And while there's lots of discussion about the impact on private companies and cash runway and 409A valuations, measuring the performance of non-public companies isn't as easy. IPOs have dried up and public statements by private companies, of course, they accentuate the good and they kind of hide the bad. Real data, unless you're an insider, is hard to find. Hello and welcome to this week's "Wikibon Cube Insights" powered by ETR. In this "Breaking Analysis", we unlock some of the secrets that non-public, emerging tech companies may or may not be sharing. And we do this by introducing you to a capability from ETR that we've not exposed you to over the past couple of years, it's called the Emerging Technologies Survey, and it is packed with sentiment data and performance data based on surveys of more than a thousand CIOs and IT buyers covering more than 400 companies. And we've invited back our colleague, Erik Bradley of ETR to help explain the survey and the data that we're going to cover today. Erik, this survey is something that I've not personally spent much time on, but I'm blown away at the data. It's really unique and detailed. First of all, welcome. Good to see you again. >> Great to see you too, Dave, and I'm really happy to be talking about the ETS or the Emerging Technology Survey. Even our own clients of constituents probably don't spend as much time in here as they should. >> Yeah, because there's so much in the mainstream, but let's pull up a slide to bring out the survey composition. Tell us about the study. How often do you run it? What's the background and the methodology? >> Yeah, you were just spot on the way you were talking about the private tech companies out there. So what we did is we decided to take all the vendors that we track that are not yet public and move 'em over to the ETS. And there isn't a lot of information out there. If you're not in Silicon (indistinct), you're not going to get this stuff. So PitchBook and Tech Crunch are two out there that gives some data on these guys. But what we really wanted to do was go out to our community. We have 6,000, ITDMs in our community. We wanted to ask them, "Are you aware of these companies? And if so, are you allocating any resources to them? Are you planning to evaluate them," and really just kind of figure out what we can do. So this particular survey, as you can see, 1000 plus responses, over 450 vendors that we track. And essentially what we're trying to do here is talk about your evaluation and awareness of these companies and also your utilization. And also if you're not utilizing 'em, then we can also figure out your sales conversion or churn. So this is interesting, not only for the ITDMs themselves to figure out what their peers are evaluating and what they should put in POCs against the big guys when contracts come up. But it's also really interesting for the tech vendors themselves to see how they're performing. >> And you can see 2/3 of the respondents are director level of above. You got 28% is C-suite. There is of course a North America bias, 70, 75% is North America. But these smaller companies, you know, that's when they start doing business. So, okay. We're going to do a couple of things here today. First, we're going to give you the big picture across the sectors that ETR covers within the ETS survey. And then we're going to look at the high and low sentiment for the larger private companies. And then we're going to do the same for the smaller private companies, the ones that don't have as much mindshare. And then I'm going to put those two groups together and we're going to look at two dimensions, actually three dimensions, which companies are being evaluated the most. Second, companies are getting the most usage and adoption of their offerings. And then third, which companies are seeing the highest churn rates, which of course is a silent killer of companies. And then finally, we're going to look at the sentiment and mindshare for two key areas that we like to cover often here on "Breaking Analysis", security and data. And data comprises database, including data warehousing, and then big data analytics is the second part of data. And then machine learning and AI is the third section within data that we're going to look at. Now, one other thing before we get into it, ETR very often will include open source offerings in the mix, even though they're not companies like TensorFlow or Kubernetes, for example. And we'll call that out during this discussion. The reason this is done is for context, because everyone is using open source. It is the heart of innovation and many business models are super glued to an open source offering, like take MariaDB, for example. There's the foundation and then there's with the open source code and then there, of course, the company that sells services around the offering. Okay, so let's first look at the highest and lowest sentiment among these private firms, the ones that have the highest mindshare. So they're naturally going to be somewhat larger. And we do this on two dimensions, sentiment on the vertical axis and mindshare on the horizontal axis and note the open source tool, see Kubernetes, Postgres, Kafka, TensorFlow, Jenkins, Grafana, et cetera. So Erik, please explain what we're looking at here, how it's derived and what the data tells us. >> Certainly, so there is a lot here, so we're going to break it down first of all by explaining just what mindshare and net sentiment is. You explain the axis. We have so many evaluation metrics, but we need to aggregate them into one so that way we can rank against each other. Net sentiment is really the aggregation of all the positive and subtracting out the negative. So the net sentiment is a very quick way of looking at where these companies stand versus their peers in their sectors and sub sectors. Mindshare is basically the awareness of them, which is good for very early stage companies. And you'll see some names on here that are obviously been around for a very long time. And they're clearly be the bigger on the axis on the outside. Kubernetes, for instance, as you mentioned, is open source. This de facto standard for all container orchestration, and it should be that far up into the right, because that's what everyone's using. In fact, the open source leaders are so prevalent in the emerging technology survey that we break them out later in our analysis, 'cause it's really not fair to include them and compare them to the actual companies that are providing the support and the security around that open source technology. But no survey, no analysis, no research would be complete without including these open source tech. So what we're looking at here, if I can just get away from the open source names, we see other things like Databricks and OneTrust . They're repeating as top net sentiment performers here. And then also the design vendors. People don't spend a lot of time on 'em, but Miro and Figma. This is their third survey in a row where they're just dominating that sentiment overall. And Adobe should probably take note of that because they're really coming after them. But Databricks, we all know probably would've been a public company by now if the market hadn't turned, but you can see just how dominant they are in a survey of nothing but private companies. And we'll see that again when we talk about the database later. >> And I'll just add, so you see automation anywhere on there, the big UiPath competitor company that was not able to get to the public markets. They've been trying. Snyk, Peter McKay's company, they've raised a bunch of money, big security player. They're doing some really interesting things in developer security, helping developers secure the data flow, H2O.ai, Dataiku AI company. We saw them at the Snowflake Summit. Redis Labs, Netskope and security. So a lot of names that we know that ultimately we think are probably going to be hitting the public market. Okay, here's the same view for private companies with less mindshare, Erik. Take us through this one. >> On the previous slide too real quickly, I wanted to pull that security scorecard and we'll get back into it. But this is a newcomer, that I couldn't believe how strong their data was, but we'll bring that up in a second. Now, when we go to the ones of lower mindshare, it's interesting to talk about open source, right? Kubernetes was all the way on the top right. Everyone uses containers. Here we see Istio up there. Not everyone is using service mesh as much. And that's why Istio is in the smaller breakout. But still when you talk about net sentiment, it's about the leader, it's the highest one there is. So really interesting to point out. Then we see other names like Collibra in the data side really performing well. And again, as always security, very well represented here. We have Aqua, Wiz, Armis, which is a standout in this survey this time around. They do IoT security. I hadn't even heard of them until I started digging into the data here. And I couldn't believe how well they were doing. And then of course you have AnyScale, which is doing a second best in this and the best name in the survey Hugging Face, which is a machine learning AI tool. Also doing really well on a net sentiment, but they're not as far along on that access of mindshare just yet. So these are again, emerging companies that might not be as well represented in the enterprise as they will be in a couple of years. >> Hugging Face sounds like something you do with your two year old. Like you said, you see high performers, AnyScale do machine learning and you mentioned them. They came out of Berkeley. Collibra Governance, InfluxData is on there. InfluxDB's a time series database. And yeah, of course, Alex, if you bring that back up, you get a big group of red dots, right? That's the bad zone, I guess, which Sisense does vis, Yellowbrick Data is a NPP database. How should we interpret the red dots, Erik? I mean, is it necessarily a bad thing? Could it be misinterpreted? What's your take on that? >> Sure, well, let me just explain the definition of it first from a data science perspective, right? We're a data company first. So the gray dots that you're seeing that aren't named, that's the mean that's the average. So in order for you to be on this chart, you have to be at least one standard deviation above or below that average. So that gray is where we're saying, "Hey, this is where the lump of average comes in. This is where everyone normally stands." So you either have to be an outperformer or an underperformer to even show up in this analysis. So by definition, yes, the red dots are bad. You're at least one standard deviation below the average of your peers. It's not where you want to be. And if you're on the lower left, not only are you not performing well from a utilization or an actual usage rate, but people don't even know who you are. So that's a problem, obviously. And the VCs and the PEs out there that are backing these companies, they're the ones who mostly are interested in this data. >> Yeah. Oh, that's great explanation. Thank you for that. No, nice benchmarking there and yeah, you don't want to be in the red. All right, let's get into the next segment here. Here going to look at evaluation rates, adoption and the all important churn. First new evaluations. Let's bring up that slide. And Erik, take us through this. >> So essentially I just want to explain what evaluation means is that people will cite that they either plan to evaluate the company or they're currently evaluating. So that means we're aware of 'em and we are choosing to do a POC of them. And then we'll see later how that turns into utilization, which is what a company wants to see, awareness, evaluation, and then actually utilizing them. That's sort of the life cycle for these emerging companies. So what we're seeing here, again, with very high evaluation rates. H2O, we mentioned. SecurityScorecard jumped up again. Chargebee, Snyk, Salt Security, Armis. A lot of security names are up here, Aqua, Netskope, which God has been around forever. I still can't believe it's in an Emerging Technology Survey But so many of these names fall in data and security again, which is why we decided to pick those out Dave. And on the lower side, Vena, Acton, those unfortunately took the dubious award of the lowest evaluations in our survey, but I prefer to focus on the positive. So SecurityScorecard, again, real standout in this one, they're in a security assessment space, basically. They'll come in and assess for you how your security hygiene is. And it's an area of a real interest right now amongst our ITDM community. >> Yeah, I mean, I think those, and then Arctic Wolf is up there too. They're doing managed services. You had mentioned Netskope. Yeah, okay. All right, let's look at now adoption. These are the companies whose offerings are being used the most and are above that standard deviation in the green. Take us through this, Erik. >> Sure, yet again, what we're looking at is, okay, we went from awareness, we went to evaluation. Now it's about utilization, which means a survey respondent's going to state "Yes, we evaluated and we plan to utilize it" or "It's already in our enterprise and we're actually allocating further resources to it." Not surprising, again, a lot of open source, the reason why, it's free. So it's really easy to grow your utilization on something that's free. But as you and I both know, as Red Hat proved, there's a lot of money to be made once the open source is adopted, right? You need the governance, you need the security, you need the support wrapped around it. So here we're seeing Kubernetes, Postgres, Apache Kafka, Jenkins, Grafana. These are all open source based names. But if we're looking at names that are non open source, we're going to see Databricks, Automation Anywhere, Rubrik all have the highest mindshare. So these are the names, not surprisingly, all names that probably should have been public by now. Everyone's expecting an IPO imminently. These are the names that have the highest mindshare. If we talk about the highest utilization rates, again, Miro and Figma pop up, and I know they're not household names, but they are just dominant in this survey. These are applications that are meant for design software and, again, they're going after an Autodesk or a CAD or Adobe type of thing. It is just dominant how high the utilization rates are here, which again is something Adobe should be paying attention to. And then you'll see a little bit lower, but also interesting, we see Collibra again, we see Hugging Face again. And these are names that are obviously in the data governance, ML, AI side. So we're seeing a ton of data, a ton of security and Rubrik was interesting in this one, too, high utilization and high mindshare. We know how pervasive they are in the enterprise already. >> Erik, Alex, keep that up for a second, if you would. So yeah, you mentioned Rubrik. Cohesity's not on there. They're sort of the big one. We're going to talk about them in a moment. Puppet is interesting to me because you remember the early days of that sort of space, you had Puppet and Chef and then you had Ansible. Red Hat bought Ansible and then Ansible really took off. So it's interesting to see Puppet on there as well. Okay. So now let's look at the churn because this one is where you don't want to be. It's, of course, all red 'cause churn is bad. Take us through this, Erik. >> Yeah, definitely don't want to be here and I don't love to dwell on the negative. So we won't spend as much time. But to your point, there's one thing I want to point out that think it's important. So you see Rubrik in the same spot, but Rubrik has so many citations in our survey that it actually would make sense that they're both being high utilization and churn just because they're so well represented. They have such a high overall representation in our survey. And the reason I call that out is Cohesity. Cohesity has an extremely high churn rate here about 17% and unlike Rubrik, they were not on the utilization side. So Rubrik is seeing both, Cohesity is not. It's not being utilized, but it's seeing a high churn. So that's the way you can look at this data and say, "Hm." Same thing with Puppet. You noticed that it was on the other slide. It's also on this one. So basically what it means is a lot of people are giving Puppet a shot, but it's starting to churn, which means it's not as sticky as we would like. One that was surprising on here for me was Tanium. It's kind of jumbled in there. It's hard to see in the middle, but Tanium, I was very surprised to see as high of a churn because what I do hear from our end user community is that people that use it, like it. It really kind of spreads into not only vulnerability management, but also that endpoint detection and response side. So I was surprised by that one, mostly to see Tanium in here. Mural, again, was another one of those application design softwares that's seeing a very high churn as well. >> So you're saying if you're in both... Alex, bring that back up if you would. So if you're in both like MariaDB is for example, I think, yeah, they're in both. They're both green in the previous one and red here, that's not as bad. You mentioned Rubrik is going to be in both. Cohesity is a bit of a concern. Cohesity just brought on Sanjay Poonen. So this could be a go to market issue, right? I mean, 'cause Cohesity has got a great product and they got really happy customers. So they're just maybe having to figure out, okay, what's the right ideal customer profile and Sanjay Poonen, I guarantee, is going to have that company cranking. I mean they had been doing very well on the surveys and had fallen off of a bit. The other interesting things wondering the previous survey I saw Cvent, which is an event platform. My only reason I pay attention to that is 'cause we actually have an event platform. We don't sell it separately. We bundle it as part of our offerings. And you see Hopin on here. Hopin raised a billion dollars during the pandemic. And we were like, "Wow, that's going to blow up." And so you see Hopin on the churn and you didn't see 'em in the previous chart, but that's sort of interesting. Like you said, let's not kind of dwell on the negative, but you really don't. You know, churn is a real big concern. Okay, now we're going to drill down into two sectors, security and data. Where data comprises three areas, database and data warehousing, machine learning and AI and big data analytics. So first let's take a look at the security sector. Now this is interesting because not only is it a sector drill down, but also gives an indicator of how much money the firm has raised, which is the size of that bubble. And to tell us if a company is punching above its weight and efficiently using its venture capital. Erik, take us through this slide. Explain the dots, the size of the dots. Set this up please. >> Yeah. So again, the axis is still the same, net sentiment and mindshare, but what we've done this time is we've taken publicly available information on how much capital company is raised and that'll be the size of the circle you see around the name. And then whether it's green or red is basically saying relative to the amount of money they've raised, how are they doing in our data? So when you see a Netskope, which has been around forever, raised a lot of money, that's why you're going to see them more leading towards red, 'cause it's just been around forever and kind of would expect it. Versus a name like SecurityScorecard, which is only raised a little bit of money and it's actually performing just as well, if not better than a name, like a Netskope. OneTrust doing absolutely incredible right now. BeyondTrust. We've seen the issues with Okta, right. So those are two names that play in that space that obviously are probably getting some looks about what's going on right now. Wiz, we've all heard about right? So raised a ton of money. It's doing well on net sentiment, but the mindshare isn't as well as you'd want, which is why you're going to see a little bit of that red versus a name like Aqua, which is doing container and application security. And hasn't raised as much money, but is really neck and neck with a name like Wiz. So that is why on a relative basis, you'll see that more green. As we all know, information security is never going away. But as we'll get to later in the program, Dave, I'm not sure in this current market environment, if people are as willing to do POCs and switch away from their security provider, right. There's a little bit of tepidness out there, a little trepidation. So right now we're seeing overall a slight pause, a slight cooling in overall evaluations on the security side versus historical levels a year ago. >> Now let's stay on here for a second. So a couple things I want to point out. So it's interesting. Now Snyk has raised over, I think $800 million but you can see them, they're high on the vertical and the horizontal, but now compare that to Lacework. It's hard to see, but they're kind of buried in the middle there. That's the biggest dot in this whole thing. I think I'm interpreting this correctly. They've raised over a billion dollars. It's a Mike Speiser company. He was the founding investor in Snowflake. So people watch that very closely, but that's an example of where they're not punching above their weight. They recently had a layoff and they got to fine tune things, but I'm still confident they they're going to do well. 'Cause they're approaching security as a data problem, which is probably people having trouble getting their arms around that. And then again, I see Arctic Wolf. They're not red, they're not green, but they've raised fair amount of money, but it's showing up to the right and decent level there. And a couple of the other ones that you mentioned, Netskope. Yeah, they've raised a lot of money, but they're actually performing where you want. What you don't want is where Lacework is, right. They've got some work to do to really take advantage of the money that they raised last November and prior to that. >> Yeah, if you're seeing that more neutral color, like you're calling out with an Arctic Wolf, like that means relative to their peers, this is where they should be. It's when you're seeing that red on a Lacework where we all know, wow, you raised a ton of money and your mindshare isn't where it should be. Your net sentiment is not where it should be comparatively. And then you see these great standouts, like Salt Security and SecurityScorecard and Abnormal. You know they haven't raised that much money yet, but their net sentiment's higher and their mindshare's doing well. So those basically in a nutshell, if you're a PE or a VC and you see a small green circle, then you're doing well, then it means you made a good investment. >> Some of these guys, I don't know, but you see these small green circles. Those are the ones you want to start digging into and maybe help them catch a wave. Okay, let's get into the data discussion. And again, three areas, database slash data warehousing, big data analytics and ML AI. First, we're going to look at the database sector. So Alex, thank you for bringing that up. Alright, take us through this, Erik. Actually, let me just say Postgres SQL. I got to ask you about this. It shows some funding, but that actually could be a mix of EDB, the company that commercializes Postgres and Postgres the open source database, which is a transaction system and kind of an open source Oracle. You see MariaDB is a database, but open source database. But the companies they've raised over $200 million and they filed an S-4. So Erik looks like this might be a little bit of mashup of companies and open source products. Help us understand this. >> Yeah, it's tough when you start dealing with the open source side and I'll be honest with you, there is a little bit of a mashup here. There are certain names here that are a hundred percent for profit companies. And then there are others that are obviously open source based like Redis is open source, but Redis Labs is the one trying to monetize the support around it. So you're a hundred percent accurate on this slide. I think one of the things here that's important to note though, is just how important open source is to data. If you're going to be going to any of these areas, it's going to be open source based to begin with. And Neo4j is one I want to call out here. It's not one everyone's familiar with, but it's basically geographical charting database, which is a name that we're seeing on a net sentiment side actually really, really high. When you think about it's the third overall net sentiment for a niche database play. It's not as big on the mindshare 'cause it's use cases aren't as often, but third biggest play on net sentiment. I found really interesting on this slide. >> And again, so MariaDB, as I said, they filed an S-4 I think $50 million in revenue, that might even be ARR. So they're not huge, but they're getting there. And by the way, MariaDB, if you don't know, was the company that was formed the day that Oracle bought Sun in which they got MySQL and MariaDB has done a really good job of replacing a lot of MySQL instances. Oracle has responded with MySQL HeatWave, which was kind of the Oracle version of MySQL. So there's some interesting battles going on there. If you think about the LAMP stack, the M in the LAMP stack was MySQL. And so now it's all MariaDB replacing that MySQL for a large part. And then you see again, the red, you know, you got to have some concerns about there. Aerospike's been around for a long time. SingleStore changed their name a couple years ago, last year. Yellowbrick Data, Fire Bolt was kind of going after Snowflake for a while, but yeah, you want to get out of that red zone. So they got some work to do. >> And Dave, real quick for the people that aren't aware, I just want to let them know that we can cut this data with the public company data as well. So we can cross over this with that because some of these names are competing with the larger public company names as well. So we can go ahead and cross reference like a MariaDB with a Mongo, for instance, or of something of that nature. So it's not in this slide, but at another point we can certainly explain on a relative basis how these private names are doing compared to the other ones as well. >> All right, let's take a quick look at analytics. Alex, bring that up if you would. Go ahead, Erik. >> Yeah, I mean, essentially here, I can't see it on my screen, my apologies. I just kind of went to blank on that. So gimme one second to catch up. >> So I could set it up while you're doing that. You got Grafana up and to the right. I mean, this is huge right. >> Got it thank you. I lost my screen there for a second. Yep. Again, open source name Grafana, absolutely up and to the right. But as we know, Grafana Labs is actually picking up a lot of speed based on Grafana, of course. And I think we might actually hear some noise from them coming this year. The names that are actually a little bit more disappointing than I want to call out are names like ThoughtSpot. It's been around forever. Their mindshare of course is second best here but based on the amount of time they've been around and the amount of money they've raised, it's not actually outperforming the way it should be. We're seeing Moogsoft obviously make some waves. That's very high net sentiment for that company. It's, you know, what, third, fourth position overall in this entire area, Another name like Fivetran, Matillion is doing well. Fivetran, even though it's got a high net sentiment, again, it's raised so much money that we would've expected a little bit more at this point. I know you know this space extremely well, but basically what we're looking at here and to the bottom left, you're going to see some names with a lot of red, large circles that really just aren't performing that well. InfluxData, however, second highest net sentiment. And it's really pretty early on in this stage and the feedback we're getting on this name is the use cases are great, the efficacy's great. And I think it's one to watch out for. >> InfluxData, time series database. The other interesting things I just noticed here, you got Tamer on here, which is that little small green. Those are the ones we were saying before, look for those guys. They might be some of the interesting companies out there and then observe Jeremy Burton's company. They do observability on top of Snowflake, not green, but kind of in that gray. So that's kind of cool. Monte Carlo is another one, they're sort of slightly green. They are doing some really interesting things in data and data mesh. So yeah, okay. So I can spend all day on this stuff, Erik, phenomenal data. I got to get back and really dig in. Let's end with machine learning and AI. Now this chart it's similar in its dimensions, of course, except for the money raised. We're not showing that size of the bubble, but AI is so hot. We wanted to cover that here, Erik, explain this please. Why TensorFlow is highlighted and walk us through this chart. >> Yeah, it's funny yet again, right? Another open source name, TensorFlow being up there. And I just want to explain, we do break out machine learning, AI is its own sector. A lot of this of course really is intertwined with the data side, but it is on its own area. And one of the things I think that's most important here to break out is Databricks. We started to cover Databricks in machine learning, AI. That company has grown into much, much more than that. So I do want to state to you Dave, and also the audience out there that moving forward, we're going to be moving Databricks out of only the MA/AI into other sectors. So we can kind of value them against their peers a little bit better. But in this instance, you could just see how dominant they are in this area. And one thing that's not here, but I do want to point out is that we have the ability to break this down by industry vertical, organization size. And when I break this down into Fortune 500 and Fortune 1000, both Databricks and Tensorflow are even better than you see here. So it's quite interesting to see that the names that are succeeding are also succeeding with the largest organizations in the world. And as we know, large organizations means large budgets. So this is one area that I just thought was really interesting to point out that as we break it down, the data by vertical, these two names still are the outstanding players. >> I just also want to call it H2O.ai. They're getting a lot of buzz in the marketplace and I'm seeing them a lot more. Anaconda, another one. Dataiku consistently popping up. DataRobot is also interesting because all the kerfuffle that's going on there. The Cube guy, Cube alum, Chris Lynch stepped down as executive chairman. All this stuff came out about how the executives were taking money off the table and didn't allow the employees to participate in that money raising deal. So that's pissed a lot of people off. And so they're now going through some kind of uncomfortable things, which is unfortunate because DataRobot, I noticed, we haven't covered them that much in "Breaking Analysis", but I've noticed them oftentimes, Erik, in the surveys doing really well. So you would think that company has a lot of potential. But yeah, it's an important space that we're going to continue to watch. Let me ask you Erik, can you contextualize this from a time series standpoint? I mean, how is this changed over time? >> Yeah, again, not show here, but in the data. I'm sorry, go ahead. >> No, I'm sorry. What I meant, I should have interjected. In other words, you would think in a downturn that these emerging companies would be less interesting to buyers 'cause they're more risky. What have you seen? >> Yeah, and it was interesting before we went live, you and I were having this conversation about "Is the downturn stopping people from evaluating these private companies or not," right. In a larger sense, that's really what we're doing here. How are these private companies doing when it comes down to the actual practitioners? The people with the budget, the people with the decision making. And so what I did is, we have historical data as you know, I went back to the Emerging Technology Survey we did in November of 21, right at the crest right before the market started to really fall and everything kind of started to fall apart there. And what I noticed is on the security side, very much so, we're seeing less evaluations than we were in November 21. So I broke it down. On cloud security, net sentiment went from 21% to 16% from November '21. That's a pretty big drop. And again, that sentiment is our one aggregate metric for overall positivity, meaning utilization and actual evaluation of the name. Again in database, we saw it drop a little bit from 19% to 13%. However, in analytics we actually saw it stay steady. So it's pretty interesting that yes, cloud security and security in general is always going to be important. But right now we're seeing less overall net sentiment in that space. But within analytics, we're seeing steady with growing mindshare. And also to your point earlier in machine learning, AI, we're seeing steady net sentiment and mindshare has grown a whopping 25% to 30%. So despite the downturn, we're seeing more awareness of these companies in analytics and machine learning and a steady, actual utilization of them. I can't say the same in security and database. They're actually shrinking a little bit since the end of last year. >> You know it's interesting, we were on a round table, Erik does these round tables with CISOs and CIOs, and I remember one time you had asked the question, "How do you think about some of these emerging tech companies?" And one of the executives said, "I always include somebody in the bottom left of the Gartner Magic Quadrant in my RFPs. I think he said, "That's how I found," I don't know, it was Zscaler or something like that years before anybody ever knew of them "Because they're going to help me get to the next level." So it's interesting to see Erik in these sectors, how they're holding up in many cases. >> Yeah. It's a very important part for the actual IT practitioners themselves. There's always contracts coming up and you always have to worry about your next round of negotiations. And that's one of the roles these guys play. You have to do a POC when contracts come up, but it's also their job to stay on top of the new technology. You can't fall behind. Like everyone's a software company. Now everyone's a tech company, no matter what you're doing. So these guys have to stay in on top of it. And that's what this ETS can do. You can go in here and look and say, "All right, I'm going to evaluate their technology," and it could be twofold. It might be that you're ready to upgrade your technology and they're actually pushing the envelope or it simply might be I'm using them as a negotiation ploy. So when I go back to the big guy who I have full intentions of writing that contract to, at least I have some negotiation leverage. >> Erik, we got to leave it there. I could spend all day. I'm going to definitely dig into this on my own time. Thank you for introducing this, really appreciate your time today. >> I always enjoy it, Dave and I hope everyone out there has a great holiday weekend. Enjoy the rest of the summer. And, you know, I love to talk data. So anytime you want, just point the camera on me and I'll start talking data. >> You got it. I also want to thank the team at ETR, not only Erik, but Darren Bramen who's a data scientist, really helped prepare this data, the entire team over at ETR. I cannot tell you how much additional data there is. We are just scratching the surface in this "Breaking Analysis". So great job guys. I want to thank Alex Myerson. Who's on production and he manages the podcast. Ken Shifman as well, who's just coming back from VMware Explore. Kristen Martin and Cheryl Knight help get the word out on social media and in our newsletters. And Rob Hof is our editor in chief over at SiliconANGLE. Does some great editing for us. Thank you. All of you guys. Remember these episodes, they're all available as podcast, wherever you listen. All you got to do is just search "Breaking Analysis" podcast. I publish each week on wikibon.com and siliconangle.com. Or you can email me to get in touch david.vellante@siliconangle.com. You can DM me at dvellante or comment on my LinkedIn posts and please do check out etr.ai for the best survey data in the enterprise tech business. This is Dave Vellante for Erik Bradley and The Cube Insights powered by ETR. Thanks for watching. Be well. And we'll see you next time on "Breaking Analysis". (upbeat music)

Published Date : Sep 7 2022

SUMMARY :

bringing you data driven it's called the Emerging Great to see you too, Dave, so much in the mainstream, not only for the ITDMs themselves It is the heart of innovation So the net sentiment is a very So a lot of names that we And then of course you have AnyScale, That's the bad zone, I guess, So the gray dots that you're rates, adoption and the all And on the lower side, Vena, Acton, in the green. are in the enterprise already. So now let's look at the churn So that's the way you can look of dwell on the negative, So again, the axis is still the same, And a couple of the other And then you see these great standouts, Those are the ones you want to but Redis Labs is the one And by the way, MariaDB, So it's not in this slide, Alex, bring that up if you would. So gimme one second to catch up. So I could set it up but based on the amount of time Those are the ones we were saying before, And one of the things I think didn't allow the employees to here, but in the data. What have you seen? the market started to really And one of the executives said, And that's one of the Thank you for introducing this, just point the camera on me We are just scratching the surface

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
ErikPERSON

0.99+

Alex MyersonPERSON

0.99+

Ken ShifmanPERSON

0.99+

Sanjay PoonenPERSON

0.99+

Dave VellantePERSON

0.99+

DavePERSON

0.99+

Erik BradleyPERSON

0.99+

November 21DATE

0.99+

Darren BramenPERSON

0.99+

AlexPERSON

0.99+

Cheryl KnightPERSON

0.99+

PostgresORGANIZATION

0.99+

DatabricksORGANIZATION

0.99+

NetskopeORGANIZATION

0.99+

AdobeORGANIZATION

0.99+

Rob HofPERSON

0.99+

FivetranORGANIZATION

0.99+

$50 millionQUANTITY

0.99+

21%QUANTITY

0.99+

Chris LynchPERSON

0.99+

19%QUANTITY

0.99+

Jeremy BurtonPERSON

0.99+

$800 millionQUANTITY

0.99+

6,000QUANTITY

0.99+

OracleORGANIZATION

0.99+

Redis LabsORGANIZATION

0.99+

November '21DATE

0.99+

ETRORGANIZATION

0.99+

FirstQUANTITY

0.99+

25%QUANTITY

0.99+

last yearDATE

0.99+

OneTrustORGANIZATION

0.99+

two dimensionsQUANTITY

0.99+

two groupsQUANTITY

0.99+

November of 21DATE

0.99+

bothQUANTITY

0.99+

BostonLOCATION

0.99+

more than 400 companiesQUANTITY

0.99+

Kristen MartinPERSON

0.99+

MySQLTITLE

0.99+

MoogsoftORGANIZATION

0.99+

The CubeORGANIZATION

0.99+

thirdQUANTITY

0.99+

GrafanaORGANIZATION

0.99+

H2OORGANIZATION

0.99+

Mike SpeiserPERSON

0.99+

david.vellante@siliconangle.comOTHER

0.99+

secondQUANTITY

0.99+

twoQUANTITY

0.99+

firstQUANTITY

0.99+

28%QUANTITY

0.99+

16%QUANTITY

0.99+

SecondQUANTITY

0.99+