Nathalie Henry Riche, Microsoft Research | WiDS 2018
(light electronic music) >> Announcer: Live from Stanford University, in Paolo Alto, California, it's theCUBE. Covering Women in Data Science Conference, 2018. Brought to you by Stanford. >> Welcome back to theCUBE, I'm Lisa Martin. At Stanford University, we're here for the third annual Women in Data Science Conference. #WiDS2018, check it out, be part of the conversation, WiDS is in it's third year, but it's aiming to reach about a hundred thousand people this week alone. There's 177 regional WiDS events in 53 countries. This event here, the main event at Stanford, features key notes, technical vision talks, a career panel, and we're excited to be joined next by Dr. Nathalie Henry Riche. I did that in French. >> Yes. (laughs) Who is a researcher at Microsoft, and Natalie, first of all, welcome to theCUBE. >> Thank you, I'm really thrilled to be here. >> Yeah, you gave a technical vision talk on data visualization, and data driven's story telling. Share with our audience, some of the key messages, that the WiDS audience heard from you earlier today. >> Well, I guess, I gave two main messages. The first one is, that a visualization has two superpowers. >> Lisa: Superpowers? >> Superpowers. >> Tell me girl. The first one is enable you to kind of think about your data in a new way. So, just kind of form hypothesis, and answer questions you didn't even know, you had by your data. So, that's the first one. The second super power, is it's really useful to communicate information, and communicate with a large audience. Visualization helps you, kind of convey your point with data, to back it up. So, that's kind of the short one minute. >> I love that, super super hero, super power. So, WiDS is, as I mentioned at the intro, in its third year, and reaching, it's grown dramatically in such a short period of time. This is your first WiDS, and your first WiDS you are a speaker. What was is that attracted you to WiDS, and you went, yes I want to give some of my time to this, and come down from Seattle? >> Well, so I'm French originally, and my studies I did at engineering school, and it was one of three out of 300 men, right? >> Wow. >> So, I was requested a lot for women in computer science, and engineering. So, I actually really like it. Just meeting all of those people, talking about, you know, trying to bring more women in. Part of the job I'm doing is very creative, so, we're trying to come up with new ideas for visualization. I think having, you know, a wide range of people adds to the mix, and we get so many more exciting ideas. So, I really want to try to have more diverse group of people I can work with, and connect to, and so that's why that attracted me to here. >> Excellent, couple of things that you said I've heard a number of times today. The first one is, what Daniela went and shared, who's also a speaker, that often times, some of the few women in tech, and you mentioned being one of three in 300? Are asked to do a lot of other things. Did you find that, that, okay you're one of the few females, you're articulate, you like speaking, we want you to do all these things. >> Yes, and I say no a lot. (laughs) >> 'Cause I have kids, too. >> That's a skill, too. But yeah, it happens a lot. I think as we go further, it's going to be less and less happening. It's better in the end. So, it's kind of a service, I see it as a service to, you know, my field, and my company. But, at the same time, we'll also get a lot of benefits from it. But that said, I try to cut it down to a manageable level, so two hours flight from Seattle works great. >> Right, right, right. Another thing is that, that you mentioned the creativity. I've heard that a number of times, today from our guest Margot Gerritsen, was on as well. Tell me about your thoughts about being in this data science role, the need for creativity. How does, how it, why is that you might consider it, like a softer skill versus the technical skills. But, how important is that creativity in your job, for example? >> So, my job is really like researcher. Trying to have new ideas, and innovate for Microsoft in particular. So, I'm not really a data scientist, but I build the tools for a data scientist. So, knowing that, creativity is important because you need to kind of think out of the box. What is the next generation of tools that they will need? In turn, they need to think out of the box, kind of get more insight out of the data they're collecting. So, creativity is just like, pervasive to this whole data science thing. Problem solving as well, so you need a lot the left brain, and a lot of the right brain. Kind of both of them together. I think that having different cultures, and different genders, even different age ranges just, you know, makes you think out of the box. That's just what's happening. Discussing with people, I was discussing with someone in cosmology, and I was like, whoa. That brought up a lot of different ideas in me, so, to me, that's really critical part of what I'm doing every day. >> I like that, that kind of aligns to what one of our guests said earlier, and that is the thought diversity. Wow, I've never >> Yes. thought of thought diversity. But, you bring up a good point about it's not just about having women in the field, it's also having diversity, in terms of generations. One of the things that's, I think, pretty unique about WiDS, is it's not just about reaching young women in their first semester at University, for example. Maria Clavijo said that's the ideal time to really inspire. But, it's also reinvigorating women who've been in academia, or industry in stem subjects for a long time. So, you have, we have multiple generations, and to your point, that diversity is important, it's not just about gender, ethnicity. It's also about the diverse perspectives that come from being >> Exactly. from different generations. >> So, it's funny, 'cause I was giving this talk earlier, and it was, one part of it was about time line. When I was researching, you know how people draw time? Well there's, depending some culture, it goes from left to right, but some other culture it's front to back, back to front, right to left. So, we need to be aware of all of that, and it's so much easier to just have the people to converse with right in your office, or next door, to be aware of those. So, that's very important, especially to big companies, like Microsoft, 'cause of, you know, a lot of customers world wide. So, it's very important to just be immersed in that. >> Definitely. So, you have been published, you've got published research, and over 60 articles in leading venues, and human-computer interaction, and information visualization. But, something we chatted about off camera, was very intriguing about visualization and children. Tell me a little bit more about that. >> So, I happen to have two kids, you know, seven and four. I'm passionate about what I'm doing, and I just couldn't keep it out of their hands, right? So, I was just starting, you know, seeing what does my daughter learn at school, like, what does she learn in kindergarten? In fact, in kindergarten, I remember one day, she brought back candies, and I'm like did you get candies from school? She's like no, because we were doing a bar chart. I was like, what? (laughs) So, I was very intrigued in, you know, what do we teach, what do your kids learn? It was fascinating to see that, you know, from an early age, they learn how to do those visualizations. But, they don't really learn how you can lie with them, or you know, to kind of think critically about that. That, you know, maybe you can start your bar chart at two, and you know, you would have less candy, I guess. But, you could, kind of convey the wrong messages. So, I became passionate about this, and decided we need to just improve our teaching about how we can represent data, and how we can also misrepresent it. In the hope that for the next generation to come, they'll be able to look at a chart, and think critically about it. Whether or not it tells the right story with the right data. Kind of beyond, just picture's worth a thousand words, then I'm not going to think about it. >> Yeah. >> This is kind of my personal effort that I try to move myself forward. (chuckles) >> Well, it's so important about having that passion, and I think that's one of things that seems to be inherent about WiDS. Even, you know, yesterday seeing on the Twitter stream, WiDS New Zealand starting in five minutes, and it's been really focused on being so, kind of inclusive. Just sort of naturally, and one of the things that I learned in some of my prep for the show, is the bias that is still there, in data interpretation. You kind of talked about that, and I never really thought about it in that way. But, if a particular group of people is looking at a data set, and thinking it says this, and no other opinions, perspectives, thoughts are able to be incorporated to go, well, maybe it says this. >> Yeah. >> Then we're limiting ourselves in terms of one, the potential that the data has to, you know, help a business, create a new business model. But also, we're limiting our perspectives on making a massive social impact with data. >> Yeah, what I find very interesting is visualization often people think about it at the end of the spectrum. Like, I've collected my data, I analyze it, and now I need to pretty picture to kind of explain what I found. But, the most powerful use of visualization, I think, comes early on. Where you actually just collected your data, and you look at it before you run any statistical test. I did that not long ago with French air traffic data in the Hollands, I put them in, and I saw the little airplanes moving around. Then, what we saw, is one air planes doing loops like this. I was like, what is this going on, right? It was just a drone, doing like tests, right? But, somehow it got looped in into that data set. So, by looking at your data early on, you can detect what's wrong with the data. So then, when you actually run your statistical test, and your analysis, you better reflect what was that data in the first place, you know, what could go wrong there? So, I think inserting visualization early on is also critical to understand what we can really know, and do, and ask, about the data in the first place. >> So, it's kind of like, watching the story unfold, rather than going, we've done all this analysis here's the picture, the story is this. The story is, your sort of, turning it sort of page by page, it sounds like, and watching it, and interpreting it, as it's unfolding. >> Rethinking what you collected in the first place. Is that the right data you collected to answer the question you wanted to ask? Is it a good match or not? Then, rethink that, you know, collect new data, or the missing one, and then go on with your analysis. So, I think to me, it's really a thinking tool. >> It also sounds like another, we talked about the technical skills that had, obviously that a computer scientist, data scientist needs to have. But, there's other skills. Empathy, communication, collaboration. Sounds like also, there needs to be an ideal kind of skill set, it has to include open mindedness. >> Yes. >> Tell me a little bit about some of your experiences there, and not being married to, the data must say this. So, if it doesn't, I'm not going to look anywhere else. Where is open mindedness, in terms of being a critical skill set that needs to come to the field? >> Yeah, I mean we, that's that is totally a re-critical point. Think already, when you're collecting the data, especially as a scientist, when I run experiment, I kind of know what I want to find. Sometimes, you don't find it. You need to kind of embrace it. But, it's hard to have because sometimes, it's like those unconscious bias you have. Like, you're not really necessarily controlling them, and just the way you collected the data in the first place, maybe just, you know, skewed your result. So, it's very important to kind of think ahead of time of all of those bias you could have, and think about all of what could go wrong. Often, the scientific process is actually that trying to think about all of the stuff that could go wrong, and then check whether or not they're wrong. We're trying to infuse that, a little bit over Microsoft as well, kind of, you know, the data that we collect, can we analyze them, can we have teams of people who really think is that the right data? Are we collecting like, world-wide for example? Are we just collecting from the US? So, there's a lot of those, kind of, ethical, and bias, kind of training, and effort to try and remove that. The maximum from our work, and I think that it's across the entire world. I think, with all of this data collection everywhere, we kind of have to do that, very consciously. >> I think two things kind of speak to me that out of what you just said, that we've heard a number of times today. One, that failure, and I don't mean to say that failure is not a bad thing. That's how you, >> That's how you learn, Exactly, >> and grow. Exactly, in many ways it's not a bad F-word, it's this is how everybody that's successful got to wherever they are. But, it's also about embracing, as you said, the word embracing, embracing the fact that you might be bring bias into this, and you have to be okay with maybe this is the wrong data set. If you consider that a failure, consider it, to your point, a growth opportunity. That is one of the themes that we've heard today, and you've, kind of, elaborated on that. The second one is, be okay getting uncomfortable, get out of that comfort zone. Consciously uncomfortable, because when you're able to do that, the possibilities are limitless. >> Yes, and that's what I try to do everyday, 'cause I try to push all of the software that we're doing, and Microsoft is so big, you know, and all of those software are like so there. (laughs) So trying to come up with new ideas, like so many are failures, you know. Oh they won't make money, or they don't actually work when you, you know, for this population. So, most of my work is failure. (laughs) But hey, one success when you know why, and I'm happy about it. >> Exactly, but it's just charting that course to getting to the ah, this is the pot of gold at the end of the rainbow. Well Nathalie, thank you so much for taking some time to talk with us on theCUBE, and sharing your stories. Congratulations on being a speaker, your first WiDS, and we look forward to seeing you back next year. >> Thank you very much. >> We want to thank you for watching theCUBE. I'm Lisa Martin, live from WiDS 2018 at Stanford University. Stick around, I'll be back with my next guest after a short break. (light electronic music)
SUMMARY :
Brought to you by Stanford. #WiDS2018, check it out, be part of the conversation, and Natalie, first of all, welcome to theCUBE. that the WiDS audience heard from you earlier today. The first one is, that a visualization has two superpowers. and answer questions you didn't even know, and you went, yes I want to give some of my time to this, I think having, you know, a wide range of people and you mentioned being one of three in 300? Yes, and I say no a lot. to, you know, my field, and my company. Another thing is that, that you mentioned the creativity. just, you know, makes you think out of the box. and that is the thought diversity. and to your point, that diversity is important, from different generations. and it's so much easier to just have the people So, you have been published, you've got published research, So, I happen to have two kids, you know, seven and four. This is kind of my personal effort Even, you know, yesterday seeing to, you know, help a business, create a new business model. and you look at it before you run any statistical test. So, it's kind of like, watching the story unfold, Is that the right data you collected Sounds like also, there needs to be So, if it doesn't, I'm not going to look anywhere else. and just the way you collected the data in the first place, that out of what you just said, and you have to be okay and Microsoft is so big, you know, and we look forward to seeing you back next year. We want to thank you for watching theCUBE.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Daniela | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Maria Clavijo | PERSON | 0.99+ |
Nathalie | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
two hours | QUANTITY | 0.99+ |
Margot Gerritsen | PERSON | 0.99+ |
Nathalie Henry Riche | PERSON | 0.99+ |
two kids | QUANTITY | 0.99+ |
seven | QUANTITY | 0.99+ |
four | QUANTITY | 0.99+ |
Lisa | PERSON | 0.99+ |
Natalie | PERSON | 0.99+ |
Seattle | LOCATION | 0.99+ |
300 | QUANTITY | 0.99+ |
one minute | QUANTITY | 0.99+ |
next year | DATE | 0.99+ |
third year | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
yesterday | DATE | 0.99+ |
today | DATE | 0.99+ |
two main messages | QUANTITY | 0.99+ |
first semester | QUANTITY | 0.99+ |
WiDS | EVENT | 0.99+ |
over 60 articles | QUANTITY | 0.99+ |
five minutes | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
three | QUANTITY | 0.99+ |
US | LOCATION | 0.99+ |
first one | QUANTITY | 0.99+ |
two | QUANTITY | 0.98+ |
53 countries | QUANTITY | 0.98+ |
Stanford University | ORGANIZATION | 0.98+ |
one part | QUANTITY | 0.98+ |
#WiDS2018 | EVENT | 0.98+ |
One | QUANTITY | 0.98+ |
Paolo Alto, California | LOCATION | 0.97+ |
Stanford | ORGANIZATION | 0.97+ |
two things | QUANTITY | 0.97+ |
this week | DATE | 0.96+ |
WiDS 2018 | EVENT | 0.95+ |
first place | QUANTITY | 0.95+ |
Stanford | LOCATION | 0.95+ |
Hollands | LOCATION | 0.94+ |
two superpowers | QUANTITY | 0.94+ |
second super power | QUANTITY | 0.93+ |
Microsoft Research | ORGANIZATION | 0.92+ |
300 men | QUANTITY | 0.92+ |
about a hundred thousand people | QUANTITY | 0.92+ |
New Zealand | LOCATION | 0.91+ |
177 regional | QUANTITY | 0.9+ |
second one | QUANTITY | 0.89+ |
Women in Data Science Conference | EVENT | 0.89+ |
Covering | EVENT | 0.88+ |
one day | QUANTITY | 0.87+ |
earlier today | DATE | 0.85+ |
WiDS | COMMERCIAL_ITEM | 0.84+ |
ORGANIZATION | 0.82+ | |
WiDS | ORGANIZATION | 0.79+ |
things | QUANTITY | 0.77+ |
one air | QUANTITY | 0.74+ |
Stanford University | LOCATION | 0.7+ |
French | LOCATION | 0.7+ |
thousand words | QUANTITY | 0.69+ |