Chris Wright, Red Hat | Red Hat Summit 2019
>> live from Boston, Massachusetts. It's the you covering your red have some twenty nineteen rots. You buy bread hat. >> Good to have you back here on the Cube as we continue our coverage. Live at the Red Had Summit twenty nineteen, Day three of our coverage with you since Tuesday. And now it's just fresh off the keynote stage, joining stew, Minutemen and myself. Chris. Right? VP and chief technology officer at Red Hat. Good job there, Chris. Thanks for being with us this morning. Yeah. >> Thank you. Glad to be here. >> Great. Right? Among your central things, you talked about this, this new cycle of innovation and those components and how they're integrating to create all these great opportunities. So if you would just share for those with those at home who didn't have an opportunity to see the keynote this morning, it's what you were talking about. I don't think they play together. And where that lies with red hat. Yeah, you bet. >> So, I think an important first kind of concept is a lot of what we're doing. Is lane a foundation or a platform? Mean red hats focuses in the platform space. So we think of it as building this platform upon which you build an innovate. And so what we're seeing is a critical part of the future is data. So we're calling it a Kino data centric. It's the data centric economy. Along with that is machine learning. So all the intelligence that comes, what do you dividing? The insights you're grabbing from that data. It introduces some interesting challenges data and privacy and what we do with that data, I mean, we're all personally aware of this. You see the Cambridge Analytica stuff, and you know, we all have concerns about our own data when you combine all of us together techniques for how we can create insights from data without compromising privacy. We're really pushing the envelope into full distributed systems, EJ deployments, data coming from everywhere and the insights that go along with that. So it's really exciting time built on a consistent platform like lycopene shift. >> So, Chris, I always loved getting to dig in with you because that big trend of distributed systems is something that you know we've been working on for quite a long time. But, you know, we fully agree. You said data at the center of everything and that roll of even more distributed system. You know, the multi cloud world. You know, customers have their stuff everywhere and getting their arms around that, managing it, being about leverage and take advantage. That data is super challenging. So you know where where, you know, help us understand some of the areas that red hat in the communities are looking to solve those problems, you know, where are we and what's going well and what's still left to work on. >> Well, there's a couple of different aspect. So number one we're building these big, complex systems. Distributed systems are challenging distribute systems, engineers, air really solving harder problems. And we have to make that accessible to everybody operations teams. And it's one of the things that I think the cloud taught us when you sort of outsource your operations is somebody else. You get this encapsulated operational excellence. We need to bring that to wherever your work clothes are running. And so we talked a lot about a I ops, how you harness the value of data that's coming out of this complex infrastructure, feed it through models and gain insights, and then predict and really Ultimately, we're looking at autonomic computing how we can create autonomous clouds, things that really are operating themselves as much as possible with minimal human intervention. So we get massive scale. I think that's one of the key pieces. The other one really talking about a different audience. The developers. So developers air trying to incorporate similar types of intelligence into their applications were making recommendations. You're tryingto personalize applications for end users. They need easy access to that data. They need easy access to train models. So how do we do that? How do we make that challenging data scientist centric workflow accessible to developers? >> Yeah, just some of the challenges out there. I think about, you know, ten, fifteen years ago, you talk to people, it was like, Well, I had my central source of truth and it was a database. And you talk to most companies now and it's like, Well, I've got a least a dozen different database and you know, my all my different flavors of them and whether in the cloud or whether I have them in my environment, you know, things like a ops trying to help people get involved with them. You talked a little bit in your keynote about some of the partners that you're working on. So how do you, you know, bring these together and simplify them when they're getting, you know, even more and more fragmented? >> Well, it's part of the >> challenge of innovation. I mean, I think there's a there's a natural cycle. Creativity spawns new ideas. New ideas are encapsulated in projects, so there's a wave of expansion in any kind of new technology time frame. And then there's ultimately, you see some contraction as we get really clear winners and the best ideas and in the container orchestration space communities is a great example of that. We had a lot of proliferation of different ways of doing it. Today we're consolidating as an industry around Cooper Netease. So what we're doing is building a platform, building a rich ecosystem around that platform and bringing our partners in who have specific solutions. They look at whether it's the top side of the house, talking to the operations teams or whether it's giving developers easy access to data and training models through some partners that we had today, like perceptive labs and each to a A I this partnership. Bringing it to a common platform, I think, is a critical part of helping the industry move forward and ultimately will see where these best of breed tools come into play. >> Here, uh, you know, maybe help a little bit with with in terms of practical application, you got, you know, open source where you've got this community development going on and then people customized based on their individual needs all well, great, right? How does the inverse happen? Where somebody who does some custom ization and comes up with a revelation of some kind and that applies back to the general community. And we can think of a time where maybe something I'm thinking like Boston children, their imaging, that hospital we saw actually related to another industry somehow and gave them an ah ha moment that maybe they weren't expecting an open source. Roy was the driver that >> Yeah, I think what we showed today were some examples of what If you distill it down to the core, there's some common patterns. There's data, they're streaming data. There's the data processing, and there's a connection of that processed data or train model to an application. So we've been building an open source project called Open Data Hub, where we can bring people together to collaborate on what are the tools that we need to be in this stack of this kind of framework or stack And and then, as we do, that we're talking to banks. They're looking at any money laundering and fraud detection. We're talking to these hospitals that were looking at completely different use cases like HC Healthcare, which is taking data to reduce the amount of time nurses need to spend, gathering information from patients and clearly identify Septus sepsis concerns totally different applications, similar framework. And so getting that industry level collaboration, I think is the key, and that having common platforms and common tools and a place to rally around these bigger problems is exactly how we do that through open source. >> So Lynn exits and an interesting place in the stack is you talked about the one commonality and everything like that. But we're actually at a time where the proliferation of what's happen to get the hardware level is something that you know of an infrastructure and harbor guy by background, and it was like, Oh, I thought We're going to homogenize everything, standardize everything, and it's like, Oh, you're showing off Colin video stuff. And when we're doing all these pieces there, there's all these. You know, new things, Every been things you know you work from the mainframe through the latest armed processors. Give us a little insight as to how your team's geeking out, making sure that they provide that commonality yet can take advantage of some of the cool, awesome stuff that's out there that's enabling that next wave of innovation. >> Yeah, so I share that infrastructure geek nous with you. So I'm so stoked the word that we're in this cycle of harbor innovation, I'll say something that maybe you sounds controversial if we go back in time just five years or a little, a little more. The focus was around cloud computing and bringing massive number of APS to the cloud, and the cloud had kind of a T shirt size, small, medium, large view of the world of computer. It created this notion that Khun computers homogenous. It's a lie. If you go today to a cloud provider and count the number of different machine types they have or instance types it's It's not just three, it's a big number. And those air all specialized. It's for Io throughput. It's for storage acceleration. It's big memory, you know. It's all these different use cases that are required for the full set of applications. Maybe you get the eighty percent in a common core, but there's a whole bunch of specific use cases that require performance optimization that are unique. And what we're seeing, I think, is Moore's law. The laws of physics are kind of colliding a little bit, and the way to get increased acceleration is through specialized hardware. So we see things like TP use from Google. We see until doing deal boost. We've got GPS and even F p G A s and the operating system is there TIO give a consistent application run time while enabling all those hardware components and bringing it all together so the applications can leverage the performance acceleration without having to be tied directly to it. >> Yeah, you actually think you wrote about that right now, one of your a block post that came about how hardware plays this hugely important role. You also talked about innovation and change happening incrementally and And that's not how we kind of think about like big Banks, right? Yeah. Wow, this is But you pointed out in the open source, it really is step by step by step. Which way? Think about disruption is being very dramatic. And there's nothing sexy about step by step. Yeah, that's how we get to Yeah, disruption. I kind of >> hate this innovation, disruption and their buzz words. On the one hand, that's what captures attention. It's not necessarily clear what they mean. I like the idea that, you know, in open source, we do every day, incremental improvements. And it's the culmination of all these improvements over time that unlock new opportunities. And people ask me all the time, where is the future? What do we do and what's going on? You know, we're kind of doing the same thing we've been doing for a long time. You think about micro services as a way to encapsulate functionality, share and reuse with other developers. Well, object oriented programming decades ago was really tryingto tryingto established that same capability for developers. So, you know, the technologies change we're building on our history were always incrementally improving. You bring it all together. And yes, occasionally you can apply that in a business case that totally disrupts an industry and changes the game. But I really wanted encourage people to think about what are the incremental changes you can make to create something fundamentally new. >> All right, I need to poke it that a little bit, Chris, because there's one thing you know, I looked back in my career and look back a decade or two decades. We used to talk about things like intelligence and automation. Those have been around my entire career. Yeah, you look it today, though, you talk about intelligence and talk about automation, it's not what we were doing, you know, just the amount of degrees, what we're having there. It is like if we'd looked at it before, it was like, Oh, my gosh, science fiction's here so, you know, way sometimes lose when we're doing step by step, that something's there making step function, improvements. And now the massive compact, massive changes. So love your opinions there. >> Yeah, well, I think it's a combination, so I talk about the perpetual pursuit of excellence. So you pick up, pick a field, you know, we're talking about management. We got data and how you apply that data. We've been working towards autonomic computing for decades. Concepts and research are old, the details and the technologies and the tools that we have today are quite different. But I'm not. You know, I'm not sure that that's always a major step function. I think part of that is this incremental change. And you look at the number for the amount of kind of processing power and in the GPU today No, this is a problem that that industry has been working on for quite a long time. At some point, we realize, Hey, the vector processing capabilities in the GPU really, really suit the machine learning matrix multiplication world real world news case. So that was a fundamental shift which unlocked a whole bunch of opportunity in terms of how we harness data and turn it into knowledge. >> Yes. So are there any areas that you look at? Now that we've been working at that, you feel we're kind of getting to those tipping points or the thie waves of technology or coming together to really enable Cem Cem massive change? >> I do think our ability to move data around, like generate data. For one thing, move data around efficiently, have access to it from a processing capability. And turning that into ah, >> model >> has so fundamentally changed in the past couple of decades that we are tapping into the next generation of what's possible and things like having this. This holy grail of a self healing, self optimizing, self driving cluster is not as science fiction as it felt twenty years ago. It's >> kind of exciting. You talk about you've been there in the past, the president, but there is very much a place in the future, right? And how would that future looks like just from from again? That aye aye perspective. It's a little scary, sometimes through to some people. So how are you going about, I guess, working with your partners to bring them along and accept certain notions that maybe five six years ago I've been a little tough to swallow or Teo feel comfortable with? >> Yeah, well, there's a couple of different dimensions there. One is, uh, finding tasks that air computers are great at that augment tasks that humans were great at and the example we had today. I love the example, which was, Let's have computers, crunch numbers and nurses do what they do best, which is provide care and empathy for the patients. So it's not taking the nurse's job away. In fact, is taking the part that is drudgery ITT's computation >> and you forget what was the >> call it machine enhanced human intelligence right on a couple of different ways of looking at that, with the idea that we're not necessarily trying to eliminate humans out of the loop. We're trying to get humans to do what they do best and take away the drudgery that computers air awesome at repetitive tasks. Big number crunching. I think that's one piece. The other pieces really, from that developer point of view, how do you make it easily accessible? And then the one step that needs to come after that is understanding the black box. What happens inside the machine learning model? How is it creating the insights that it's creating and there's definitely work to be done there? There's work that's already underway. Tto help understand? Uh, the that's really what's behind the inside so that we don't just trust, which can create some problems when we're introducing data that itself might already be biased. Then we assumed because we gave data to a computer which is seemingly unbiased, it's going to give us an unbiased result, right? Garbage in garbage out. >> So we got really thoughtful >> about what the models are and what the data is that we're feeding >> It makes perfect sense it. Thanks for the time. Good job on the keynote stage again this morning. I know you've got a busy afternoon scheduled as well, so yeah, I will let you. We'Ll cut you loose. But thank you again. Always good to see you. >> Yeah. I always enjoy being here >> right at that's right. Joining us from red hat back with Wharton Red Hat Summit forty nineteen. You're watching live here on the Cube?
SUMMARY :
It's the you covering Good to have you back here on the Cube as we continue our coverage. Glad to be here. an opportunity to see the keynote this morning, it's what you were talking about. So all the intelligence that comes, what do you dividing? So, Chris, I always loved getting to dig in with you because that big trend of distributed And it's one of the things that I think the cloud taught us when you sort of outsource your operations is somebody else. I think about, you know, And then there's ultimately, you see some contraction as we get really clear winners and the best ideas Here, uh, you know, maybe help a little bit with with in terms of practical application, Yeah, I think what we showed today were some examples of what If you distill it down So Lynn exits and an interesting place in the stack is you talked about the one commonality the word that we're in this cycle of harbor innovation, I'll say something that maybe you sounds controversial Yeah, you actually think you wrote about that right now, one of your a block post that came about how people to think about what are the incremental changes you can make to create something fundamentally new. and talk about automation, it's not what we were doing, you know, just the amount of degrees, So you pick up, pick a field, you know, we're talking about management. Now that we've been working at that, you feel we're kind of getting to those I do think our ability to move data around, like generate data. has so fundamentally changed in the past couple of decades that we are tapping So how are you So it's not taking the The other pieces really, from that developer point of view, how do you make it easily accessible? Good job on the keynote stage again this morning. Joining us from red hat back with Wharton Red Hat Summit forty nineteen.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Chris | PERSON | 0.99+ |
Chris Wright | PERSON | 0.99+ |
Boston, Massachusetts | LOCATION | 0.99+ |
eighty percent | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
Red Hat | ORGANIZATION | 0.99+ |
five years | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
Colin | PERSON | 0.99+ |
Lynn | PERSON | 0.99+ |
Cooper Netease | ORGANIZATION | 0.99+ |
first | QUANTITY | 0.98+ |
one piece | QUANTITY | 0.98+ |
Cambridge Analytica | ORGANIZATION | 0.98+ |
one | QUANTITY | 0.98+ |
Today | DATE | 0.98+ |
Roy | PERSON | 0.97+ |
twenty years ago | DATE | 0.97+ |
ITT | ORGANIZATION | 0.97+ |
this morning | DATE | 0.96+ |
ten | DATE | 0.96+ |
five six years ago | DATE | 0.96+ |
Tuesday | DATE | 0.96+ |
one thing | QUANTITY | 0.96+ |
three | QUANTITY | 0.96+ |
HC Healthcare | ORGANIZATION | 0.95+ |
Day three | QUANTITY | 0.95+ |
decades ago | DATE | 0.95+ |
two decades | QUANTITY | 0.95+ |
Kino | ORGANIZATION | 0.94+ |
one step | QUANTITY | 0.94+ |
fifteen years ago | DATE | 0.93+ |
past couple of decades | DATE | 0.93+ |
One | QUANTITY | 0.93+ |
Boston | LOCATION | 0.88+ |
Open Data Hub | TITLE | 0.87+ |
a decade | QUANTITY | 0.87+ |
each | QUANTITY | 0.86+ |
stew | PERSON | 0.82+ |
Red Hat Summit 2019 | EVENT | 0.81+ |
twenty nineteen rots | QUANTITY | 0.8+ |
decades | QUANTITY | 0.79+ |
a dozen | QUANTITY | 0.79+ |
Red Had Summit | EVENT | 0.79+ |
wave of | EVENT | 0.76+ |
Moore | PERSON | 0.75+ |
pieces | QUANTITY | 0.74+ |
Septus sepsis | OTHER | 0.7+ |
waves of | EVENT | 0.68+ |
Khun | ORGANIZATION | 0.67+ |
forty nineteen | EVENT | 0.64+ |
twenty | QUANTITY | 0.61+ |
Minutemen | PERSON | 0.61+ |
Wharton Red Hat Summit | ORGANIZATION | 0.56+ |
big | ORGANIZATION | 0.55+ |
Cem Cem | ORGANIZATION | 0.53+ |
red hat | ORGANIZATION | 0.5+ |
nineteen | EVENT | 0.48+ |
Cube | ORGANIZATION | 0.45+ |