Image Title

Search Results for Erik Rudin:

Erik Rudin, ScienceLogic | ScienceLogic Symposium 2019


 

>> from Washington, D. C. It's the queue covering science logic. Symposium twenty nineteen. Brought to you by Science Logic. >> Hi, I'm student men and this is the Cubes coverage of Science Logic. Symposium twenty nineteen here at the Ritz Carlton in Washington, D. C. Been four hundred sixty. People here just finished the afternoon Kino, and they've actually gone off to the evening event. It's thie yet to be finished. Spy Museum. They get a good three sixty view of Washington D. C. So the hallways are a little echoing in quiet but really excited to have on the final guest of the day. Eric Gordon, who's the vice president of business development and alliances as science logic. Erik, thanks so much for joining me, >> thanks to you. Great to be here. >> All right, so busy. Dev and Alliances. I've talked to a number of your partner's. I've gone through a lot of things, but you wear, I think, just like your CEO. A few different hats. Ah, and your old let's let's get into what your role is that the company? >> Yeah, it's actually changed over time, but for the most part I've to court responsibilities. One is I'm looking after our ecosystem of technology partners. And so we have from key strategic CE that we work with in the marketplace, in the cloud space on the data center, all across the ecosystem, a lot of different technologies. But we also have products that we resell input on our priceless that combined to create a solution for our customers in the second half of what my responsible is really focused on. What is our product strategy around integration? Automation? Because those Air Corps components to our platform and I look after that with several different teams. >> So let's talk about that the ecosystem pit person, the alliances. Because I got a lot of shows. I talked to a lot of companies, and it's all too easy for companies to be like, Oh, we're we're the best and we do so many different things. And when I first heard about the space in a ops, it's like, Oh, well, I I Ops is replacing a lot of waves and, you know, your average customer replaces fourteen tools. I heard there's one customer who replaces fifty tools, but at the same time, there was a strong focus about integrations in deeper even some of the products that you say, Yeah, there's overlap in that competitive, you know, you're working with those environments, so give us a little bit of the philosophy, how you balance that, you know, we want to do it all and help our customers to do lots of different things. And especially when you get to big customers and service providers, we understand that it's a big world and there never is that, you know, mythical single pane of glass. >> Yeah, no, totally agree. And we hear this a lot. You know, I've got a tool for this. I got a tool for that and or I had to Vendor come in and say that they could do it all. And you know, really, At the end of the day, if there's there's no one vendor on DH, you know the Venn diagrams of functionalities, air overlapping. That's the nature of the industry. And when we saw this on the early days of it with the big monopolies. But I think right now it's it's around. How do we saw the customer problem? Mohr effectively, From our perspective, we look at the combination of things. First is is what solutions out there give us good data data that we can use data that we can enrich, how we can leverage that to help drive better insights from other types of data that we collect so that theirs is where integration is a keep part of this on DH. What we know is that ultimately in our space, we're doing about monitoring a core collection. We're goingto have to click with everybody, so we're gonna have to integrate with any partner that might have some form of I. P are connected through an I p address to some sort of a p I. We need that data. So we have partnerships on that side. I think really, what's interesting is when we think about things like workflow or orchestration or types of mediation, we might integrate with other technologies to enrich that data further. So we look for partners that ultimately our customers air using things that we can do consolidation and drive better outcome with that enrich date experience. >> Yes, so let's drill down one little bit if you talk about like, you know a PM and SM tools out there some recent announcements and and you digging deeper on there. What what are some of the highlights? So one >> thing is, if you already have, like, agents are often come up, Our customs says, Well, I've got an A P M. Agent that's already doing some things. Well, that's great. We can leverage that, that there's some good insight that we can gather from either to apologies or other metrics or like in user experience. But we also go deeper on other aspects, like on the network side or on the infrastructure side, or on the the cloud service aside. So, you know, ultimately, it's a conversation of say, what? What can we leverage? What, what's accurate, what's in real time? And if there's things that we can, you know, gather, then that's our primary strategy. So I you know, I do think the ecosystem plays a key role in a i ops, but really, to do that, it's run automation because anything that we do, we have to do with scale and we have to do with security. We have to do it with the intent of driving some form of outcome. And so, you know, those are the key principles behind selecting technology partners. >> Okay, Let's talk some about that automation. It was a big discussion in the keynote this morning. Really talking about the maturity model. One of the analysts up there says you really want to make sure you separate things like, you know, the machine learning piece of it with the automation. The observation I've made a couple of times is, you know, yes. We all know you can automate a really bad process. And so I need toe, you know, make sure, you know, do I have good data And, you know, how am I making automation make me better Not just, you know, to change things. >> Yeah, well, I think it's Science Lodge that we look at. Automation is in every part of what we do within the product. From the from the collection of how we automate it scale how we consolidate that data. And then we're doing a lot of the data preparation using automation technologies. And then when we start to analyze and enrich that data, we're also using it Other algorithmic approaches, for example, topology and context. So if we know that some things connected weaken Dr An automation to make an inference and that data then feeds into the final step, which is around how we action on that. So we drive automation in the classic sense to say trigger workflow or, let's say, update another system of record or system of truth like a C M G B or a notification. And so one of things that we did hear from Garden this morning is engaging in an SM process. Is a core part of AI ai ops as muchas data collection and driving other forms of automation. >> All right, Do you have some examples of you know how automation you're helping your customers love any customer stories you've got along that line? >> Well, >> really. You know, there's so many stories we're hearing the halls of Symposium, and so it's it's it's hard to pick one, but, you know, I think all ten times what we say is, what what's driving your service desk time like you've got people you know, looking at all of these different dispirit systems, and we can look at it. Let's say a top end of your most sort of frequented events or alerts, or even look at your top service desk incidents and say, How could we automate that, you know. And some of that automation could be at the technology level, you know, simplest as restarting a service or prove you re provisioning of'Em. Or it could be clearing a log or even maybe shutting down an event because it's irrelevant. So there's There's several different examples in the cloud as well. Terms of how things air provisioning attached. And if we see something out of a policy, we can alarm that say, hey, maybe my storage costs are going to accelerate because someone made a bad change. So there's different ways that we can apply automation during the life cycle. But I think enhancing the service management component perhaps is one of the most impactful ones, >> you know. So, Eric, we azan industry automation been something we've been talking about for quite a while now, and they're they're sometimes pushback of, you know, from the end, users especially, you know, some of the practitioners out there as you know. Well, I could do it better. You know, the fear that you're going to lose your job. How are you seeing that progressing and you know, how were things different today? Both from a technology standpoint, as well as from your customers. Can't wait. >> I think if you asked any enterprise CIA already service provider, service delivery manager, they'd always say, I'd love to operate as much as I can when you get down on the practitioner level. You know, obviously I think there's some sort. Like I I do my job, Thank you very much. I have my favorite wit, my process. So I think there's a conversation depending on. You know, if we're saying hey from the practitioner side, is there set of data that you need or set of scripts? Or are things that you're doing manually that we can put into a workflow? And at the at the business layer, it's like, Do you feel like you're getting the value from some of the investments you've made? And is, how is automation? Help you realize that an example there is. We see oftentimes is around the quality of data that's going into the C, M. D. B and from AA AA. Lot of times we see that their investment in technology is like service now, and other platforms is fairly high expense, and they want to optimize that, and they want to realize the power of automation at the at the service level. So if we can, if we can convince, if you will, through a set of really concrete use cases that the data coming from science logic at the speed and the quality can actually improve the seemed to be to >> the level of >> really efficient automation. All of a sudden, people start to see that as a change as an opportunity. And that's where I think a I Ops is helping change the narrative, to say how automation Khun B really, really applied rather than just being this mystical concept that is hard to do. And, you know, people don't liketo think that a robot's taking their job. I think what's gonna happen is that machine learning algorithms are going to make jobs easier and, you know, ultimately were far, far from the point where a ized doing something and some sort of, you know, crazy automata way. But I think it's the deep learning, moving a machine learning to you. No good quality data sets that dr meaningful insights that's giving us a lot better view until where automation could play in the >> future. Yeah, absolutely. It's our belief that you know, automation. There's certain things that you probably don't want to do because repetitive, it's boring or mistake prone on DH. Therefore, you know automation can really help those environments move forward. You could move up the stack. You can manage those environment. There's definitely some retraining that that needs to happen often. But you know that the danger is if you're if you're doing now what you were doing five years ago, chances are your competition is moving along and, you know, finding a better way to do it. >> You know, just a point on this soup is really around the velocity of data that's coming in. So we're seeing, you know, we talked about the three bees. You know, the volume of data. You have to use automation to be able to manage that huge amount of different data sources, the variety. There's no human that can process the amount of machine information from the amount of technologies that you have on DH that you know. Obviously it's speed, right. The velocity and that is that is clearly not going to be something that any human could be capable of doing. And so there's a relationship here between technology and human processes and science logics and a really interesting position right now to really kind of help with that process. But more importantly, accelerate the value by being all to process it and make it intelligent. >> Wait, Erica, you're saying I'm not neo from the Matrix and I can't, you know, read through everything and be able to move faster than physics allows. Give >> yourself maybe fifteen, twenty years. We might be. You know that that you know, I don't think that that many people can really predict the impact of the you know, we'LL say machinery, evolving toe, artificial intelligence and there's it's going to be very used, case specific. But we do know one thing is that algorithms? Air helping. But algorithms are dependent on that clean data stack, right? And And if you can't handle the scale, then obviously there's going. It's going to be minimized in terms. Is total utility >> alright? Well, Eric, I get the good to let you give us that the final word from science logic from Symposium twenty nineteen on the Cube. >> So you know, the first thing is is this is there's two things that we learned from this event. The first thing is, is how our customers you're evolving in this dynamic space. And what we know is that if if you don't change, it's going to be a problem. Because the only consistent thing is change and change is happening faster on it. And we call that disruption. And so what we want to do is we want to understand how science AJ is a technology company. I can really help that customer go through that transition with confidence. And then, more importantly, is what could we do? Delivering better, more enrich solutions to our customers that actually are changing the way the game is played. And so we feel like we're a disrupter in the A ops market. We are. Certainly Forrester has helped us recognize that. But But we're not done work. We're continuing on this journey. >> All right, Well, Eric, routine. Thank you so much for sharing your insights and the journey towards Aye, Aye, Ops. Thanks so much to. All right. Well, that comes to an end of what we're doing here at science Logic. Symposium twenty nineteen. I know. I learned a lot. I hope you did too. I'm stew Minutemen. Thanks so much from our whole crew. Here it's Silicon Angle Media's The Cube. Check out the cube dot net for all the videos from this show, as well as where we'LL be in the future. Reach out if you have any questions and once again, thanks for joining us.

Published Date : Apr 25 2019

SUMMARY :

Brought to you by Science Logic. afternoon Kino, and they've actually gone off to the evening event. thanks to you. I've gone through a lot of things, but you wear, I think, just like your CEO. And so we have from key strategic of the products that you say, Yeah, there's overlap in that competitive, you know, you're working with those environments, And you know, really, At the end of the day, if there's there's no one vendor Yes, so let's drill down one little bit if you talk about like, you know a PM and SM And if there's things that we can, you know, gather, then that's our primary strategy. And so I need toe, you know, make sure, you know, do I have good data And, And so one of things that we did hear from and so it's it's it's hard to pick one, but, you know, I think all ten times what we say is, you know, from the end, users especially, you know, some of the practitioners out there as you So if we can, if we can convince, if you will, through a set of really And, you know, people don't liketo think that a robot's taking their job. It's our belief that you know, automation. So we're seeing, you know, we talked about the three bees. and be able to move faster than physics allows. people can really predict the impact of the you know, we'LL say machinery, Well, Eric, I get the good to let you give us that the final word from science logic from So you know, the first thing is is this is there's two things that we learned from this event. I hope you did too.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Eric GordonPERSON

0.99+

Erik RudinPERSON

0.99+

ErikPERSON

0.99+

EricaPERSON

0.99+

EricPERSON

0.99+

fifty toolsQUANTITY

0.99+

Air CorpsORGANIZATION

0.99+

fifteenQUANTITY

0.99+

Washington, D. C.LOCATION

0.99+

Washington D. C.LOCATION

0.99+

two thingsQUANTITY

0.99+

FirstQUANTITY

0.99+

fourteen toolsQUANTITY

0.99+

second halfQUANTITY

0.99+

CIAORGANIZATION

0.99+

BothQUANTITY

0.99+

first thingQUANTITY

0.99+

OneQUANTITY

0.98+

one customerQUANTITY

0.98+

one thingQUANTITY

0.98+

five years agoDATE

0.98+

ForresterORGANIZATION

0.98+

three beesQUANTITY

0.98+

four hundred sixtyQUANTITY

0.97+

firstQUANTITY

0.97+

VendorORGANIZATION

0.96+

oneQUANTITY

0.96+

ten timesQUANTITY

0.94+

this morningDATE

0.91+

todayDATE

0.91+

ScienceLogicORGANIZATION

0.89+

Silicon Angle MediaORGANIZATION

0.89+

Spy MuseumORGANIZATION

0.85+

twenty yearsQUANTITY

0.85+

twentyQUANTITY

0.82+

AJORGANIZATION

0.82+

Ritz CarltonORGANIZATION

0.82+

GardenORGANIZATION

0.8+

single paneQUANTITY

0.79+

ScienceLogic SymposiumEVENT

0.76+

MohrPERSON

0.76+

SymposiumTITLE

0.75+

three sixtyQUANTITY

0.73+

nineteenEVENT

0.62+

2019DATE

0.57+

twenty nineteenEVENT

0.54+

LogicORGANIZATION

0.53+

AyePERSON

0.52+

stew MinutemenPERSON

0.51+

coupleQUANTITY

0.51+

CubesORGANIZATION

0.48+

AyeORGANIZATION

0.47+

OpsORGANIZATION

0.37+

CubePERSON

0.33+