Image Title

Search Results for Coupa Cafe:

Vijay Raghavendra, Walmart Labs | WiDS 2018


 

>> Narrator: Live from Stanford University in Palo Alto, California, it's the CUBE! Covering, Women in Data Science Conference 2018, brought to you by Stanford. >> Welcome back to the CUBE, we are live at Stanford University, we've been here all day at the third annual Women in Data Science Conference, WiDS 2018. This event is remarkable in its growth in scale, in its third year, and that is, in part by the partners and the sponsors that they have been able to glean quite early on. I'm excited to be joined by Vijay Raghavendra, the senior vice president of Merchant Technology and stores as well, from Walmart Labs. Vijay, welcome to the CUBE! >> Thank you, thank you for having me. >> Walmart Labs has been paramount to the success of WiDS, we had Margot Gerritsen on earlier, and I said, "How did you get the likes of a Walmart Labs as a partner?" And, she was telling me that, the coffee-- the coffee shop conversation >> Yeah, the Coupa Cafe! >> That she had with Walmart Labs a few years ago, and said, "Really, partners and sponsors like Walmart have been instrumental in the growth and the scale, of this event." And, we've got the buzz around, so we can hear the people here, but this is the big event at Stanford. There's 177 regional events, 177! In 53 countries. It's incredible. Incredible, the reach. So, tell me a little bit about the... From Walmart Labs perspective, the partnership with WiDS, what is it that really kind of was an "Aha! We've got to do this"? >> Yeah, it's just incredible, seeing all of these women and women data scientists here. It all started with Esteban Arcaute, who used to lead data science at Walmart Labs, and Search, before he moved on to Facebook with Margot. And, Karen in the cafe in Palo Alto, in 2015, I think. And Esteban and I had been talking about how we really expand the leverage of data and data science within Walmart, but more specifically, how we get more women into data science. And, that was really the genesis of that, and, it was really-- credit goes to Esteban, Margot, and Karen for, really, thinking through it, bringing it together, and, here we are. >> Right, I mean bringing it together from that concept, that conversation here at Stanford Cafe to the first event was six months. >> Yeah, from June to November, and, it's just incredible the way they put it together. And, from a Walmart Labs perspective, we were thrilled to be a huge part of it. And, all the way up the leadership chain there was complete support, including my boss Jeremy King, who was all in, and, that really helped. >> Margot was, when we were chatting earlier, she was saying, "It's still sort of surprising," and she said she's been, I think in, in the industry for, 30-plus years, and she said that, she always thought, back in the day, that by the time she was older, this problem would be solved, this gender gap. And she says, "Actually, it's not like it's still stagnant," we're almost behind, in a sense. When I look at the ... women that are here, in Stanford, and those that are participating via those regional events, the livestream that WiDS is doing, as well as their Facebook livestream. You know, the lofty goal and opportunity to reach 100,000 people shows you that there's clearly a demand, there's a need for this. I'd love to get your perspective on data science at Walmart Labs. Tell me a little bit about the team that you're leading, you lead a team of engineers, data scientists, product managers, you guys are driving some of the core capabilities that drive global e-commerce for Walmart. Tell me about, what you see as important for that female perspective, to help influence, not only what Walmart Labs is doing, but technology and industry in general. >> Yeah. So, the team I lead is called Merchant Technology, and my teams are responsible for, almost every aspect of what drives merchandising within Walmart, both on e-commerce and stores. So, within the purview of my teams are everything from the products our customers want, the products we should be carrying either in stores or online, to, the product catalog, to search, to the way the products are actually displayed within a store, to the way we do pricing. All of these are aspects of what my teams are driving. And, data and data science really put me at every single aspect of this. And the reason why we are so excited about women in data science and why getting that perspective is so important, is, we are in the retail business, and our customers are really span the entire spectrum, from, obviously a lot of women shop at Walmart, lot of moms, lot of millennials, and, across the entire spectrum. And, our workforce needs to reflect our customers. That's when you build great products. That's when you build products that you can relate to as a customer, and, to us that is a big part of what is driving, not just the interest in data science, but, really ensuring that we have as diverse and as inclusive a community within Walmart, so we can build products that customers can really relate to. >> Speaking of being relatable, I think that is a key thing here that, a theme that we're hearing from the guests that we're talking to, as well as some of the other conversations is, wanting to inspire the next generation, and helping them understand how data science relates to, every industry. It's very horizontal, but it also, like a tech company, or any company these days is a tech company, really, can transform to a digital business, to compete, to become more profitable. It opens up new business models, right, new opportunities for that. So does data science open up so many, almost infinite opportunities and possibilities on the career front. So that's one of the things that we're hearing, is being able to relate that to the next generation to understand, they don't have to fit in the box. As a data scientist, it sounds like from your team, is quite interdisciplinary, and collaborative. >> And, to us that is really the essence of, or the magic of, how you build great products. For us data science is not a function that is sitting on the side. For us, it is the way we operate as we have engineers, product managers, folks from the business teams, with our data scientists, really working together and collaborating every single day, to build great products. And that's, really how we see this evolving, it's not as a separate function, but, as a function that is really integrated into every single aspect of what we do. >> Right. One of the things that we talked about is, that's thematic for WiDS, is being able to inspire and educate data scientists worldwide, and obviously with the focus of helping females. But it's not just the younger generation. Some of the things that we're also hearing today at WiDS 2018 is, there's also an opportunity within this community to reinvigorate the women that have been in, in STEM and academia and industry for quite a while. Tell me a little bit more about your team and, maybe some of the more veterans and, how do you kind of get that spirit of collaboration so that those that, maybe, have been in, in the industry for a while get inspired and, maybe get that fire relit underneath them. >> That's a great question, because we, on our teams, when you look across all the different teams across different locations, we have a great mix of folks that bring very different, diverse experiences to the table. And, what we've found, especially with the way we are leveraging data, and, how that is invigorating the way we are... How people come to the table, is really almost seeing the art of what is possible. We are able to have, with data, with data science, we are able to do things that, are, really step functions in terms of the speed at which we can do things. Or, the- for example, take something as simple as search, product search, which is one of the, capabilities we own, or my team is responsible for, but, you could build the machine learning ranking, and, relevance and ranking algorithms, but, when you combine it with, for example, a merchant that really fundamentally understands their category, and you combine data science with that, you can accelerate the learning in ways that is not possible. And when folks see that, and see that in operation that really opens up a whole, slew of other ideas and possibilities that they think about. >> And, I couldn't agree more. Looking at sort of the skillset, we talk a lot about, the obvious technical skillset, that a data scientist needs to have, but there's also, the skills of, empathy, of communication, of collaboration. Tell me about your thoughts on, what is an ideal mix, of skills that that data scientist, in this interdisciplinary function, should have. >> Yeah, in fact, I was talking with a few folks over lunch about just this question! To me, some of the technical skills, the grounding in math and analytics, are table stakes. Beyond that, what we look for in data scientists really starts with curiosity. Are they really curious about the problems they're trying to solve? Do they have tenacity? Do they settle for the more obvious answers, or do they really dig into, the root cause, or the root, core of the problems? Do they have the empathy for our customers and for our business partners, because unless you're able to put yourself in those shoes, you're going to be approaching at, maybe, in somewhat of an antiseptic way? And it doesn't really work. And the last, but one of the most important parts is, we look for folks who have a good sense for product and business. Are they able to really get into it, and learn the domain? So for example, if someone's working on pricing, do they really understand pricing, or can they really understand pricing? We don't expect them to know pricing when they come in, but, the aptitude and the attitude is really, really critical, almost as much as the core technical skills, because, in some ways, you can teach the technical skills, but not some of these other skills. >> Right, and that's an interesting point that you bring up, is, what's teachable, and, I won't say what's not, but what might be, maybe not so natural for somebody. One of the things, too, that is happening at WiDS 2018 is the first annual Datathon. And, Margot was sharing this huge number of participants that they had and they set a few ground rules like wanting the teams to be 50% female, but, tell us about the Datathon from your global visionary sponsorship level; what excites you about that in terms of, the participation in the community and the potential of, "Wow, what's next"? >> Yeah... So, it's hugely exciting for us, just seeing the energy that we've seen. And, the way people are approaching different problems, using data to solve very different kinds of problems ... across the spectrum. And for us, that is a big part of what we look for. For us it is really about, not just coming up with a solution, that's in search of a problem, but really looking at real-world problems and looking at it from the perspective of, "Can I bring data, can I bring data science to bear on this problem?", to solve it in ways that, either are not possible, or can accelerate the way we would solve the problems otherwise. And that is a big part of what is exciting. >> Yeah, and the fact that the impact that data science can make to, every element of our lives is, like I said before, it's infinite, the possibilities are infinite. But that impact is something that, I think, how exciting to be able to be in an industry or a field, that is so pervasive and so horizontal, that you can make a really big social impact. One of they other things, too, that Margot said. She mentioned that the Datathon should be fun, and I loved that, and also have an element of creativity. What's that balance of, creativity in data science? Like, what's the mixture, because we can be maybe over-creative, and maybe interpret something that's in a biased way. What is your recommendation on how much creativity can creep into, and influence, positively, data science? >> Yeah, that's a great question, and there's no perfect answer for it. Ultimately, at least my biases towards using data and data science to, solve real problems. And... As opposed to, pure research, so our focus very much is on applied learning, and applied science. And, to me, within that, I do want the data science to be creative, data scientists to be creative, because, by putting too many guardrails, you limit the way in which they would explore the data, that they may come up with insights that, well, we might not see otherwise. And, which is why, I go back to the point I made, when you have data scientists who fundamentally understand a business, and the business problems we are trying to solve, or the business domains, I think they can then come up with very interesting, innovative ways of looking at the data, and the problem, that you might not otherwise. So, I would by no means want to limit their creativity, but I do have a bias towards ensuring that it is focused on problems we are trying to solve. >> Excellent. Well, Vijay, thank you so much for stopping by the CUBE, congratulations on the continued success of the partnership with WiDS and, we're looking forward to seeing what happens the rest of the year, and we'll probably see you next year at WiDS 2019! >> Absolutely, thank you! >> Excellent, we want to thank you, you're watching the CUBE, live from Stanford University, the third annual Women in Data Science Conference. I am Lisa Martin, I'll be right back after a short break with my next guest. (cool techno music)

Published Date : Mar 5 2018

SUMMARY :

in Palo Alto, California, it's the CUBE! in part by the partners and the sponsors and the scale, of this event." And, Karen in the cafe in Palo Alto, to the first event was six months. And, all the way up the leadership chain back in the day, that by the time she was older, the product catalog, to search, from the guests that we're talking to, or the magic of, how you build great products. One of the things that we talked about is, is really almost seeing the art of what is possible. Looking at sort of the skillset, and learn the domain? and the potential of, "Wow, what's next"? and looking at it from the perspective of, Yeah, and the fact that the impact and the business problems we are trying to solve, of the partnership with WiDS and, the third annual Women in Data Science Conference.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
EstebanPERSON

0.99+

Lisa MartinPERSON

0.99+

Jeremy KingPERSON

0.99+

MargotPERSON

0.99+

KarenPERSON

0.99+

WalmartORGANIZATION

0.99+

Vijay RaghavendraPERSON

0.99+

2015DATE

0.99+

Palo AltoLOCATION

0.99+

Margot GerritsenPERSON

0.99+

VijayPERSON

0.99+

Walmart LabsORGANIZATION

0.99+

JuneDATE

0.99+

50%QUANTITY

0.99+

100,000 peopleQUANTITY

0.99+

NovemberDATE

0.99+

53 countriesQUANTITY

0.99+

Esteban ArcautePERSON

0.99+

StanfordLOCATION

0.99+

177QUANTITY

0.99+

Palo Alto, CaliforniaLOCATION

0.99+

177 regional eventsQUANTITY

0.98+

next yearDATE

0.98+

third yearQUANTITY

0.98+

six monthsQUANTITY

0.98+

first eventQUANTITY

0.98+

oneQUANTITY

0.98+

WiDS 2018EVENT

0.98+

WiDSORGANIZATION

0.98+

CUBEORGANIZATION

0.98+

30-plus yearsQUANTITY

0.98+

FacebookORGANIZATION

0.97+

bothQUANTITY

0.97+

StanfordORGANIZATION

0.97+

Stanford UniversityORGANIZATION

0.97+

DatathonEVENT

0.96+

Women in Data Science ConferenceEVENT

0.95+

Merchant TechnologyORGANIZATION

0.95+

OneQUANTITY

0.95+

Stanford CafeLOCATION

0.93+

WiDSEVENT

0.92+

todayDATE

0.9+

WiDS 2019EVENT

0.9+

SearchORGANIZATION

0.89+

Women in Data Science Conference 2018EVENT

0.89+

few years agoDATE

0.83+

Stanford UniversityORGANIZATION

0.8+

single aspectQUANTITY

0.79+

annualQUANTITY

0.7+

first annualQUANTITY

0.69+

momsQUANTITY

0.67+

every single dayQUANTITY

0.67+

thirdEVENT

0.66+

partsQUANTITY

0.66+

Coupa CafeORGANIZATION

0.64+

third annualQUANTITY

0.62+

Covering,EVENT

0.58+

CUBEEVENT

0.42+