Ziya Ma, Intel - Spark Summit East 2017 - #sparksummit - #theCUBE
>> [Narrator] Live from Boston Massachusetts. This is the Cube, covering Sparks Summit East 2017. Brought to you by Databricks. Now here are your hosts, Dave Alante and George Gilbert. >> Back to you Boston everybody. This is the Cube and we're here live at Spark Summit East, #SparkSummit. Ziya Ma is here. She's the Vice President of Big Data at Intel. Ziya, thanks for coming to the Cube. >> Thanks for having me. >> You're welcome. So software is our topic. Software at Intel. You know people don't necessarily associate Intel with always with software but what's the story there? >> So actually there are many things that we do for software. Since I manage the Big Data engineering organization so I'll just say a little bit more about what we do for Big Data. >> [Dave] Great. >> So you know Intel do all the processors, all the hardware. But when our customers are using the hardware, they like to get the best performance out of Intel hardware. So this is for the Big Data space. We optimize the Big Data solution stack, including Spark and Hadoop on top of Intel hardware. And make sure that we leverage the latest instructions set so that the customers get the most performance out of the newest released Intel hardware. And also we collaborated very extensively with the open source community for Big Data ecosystem advancement. For example we're a leading contributor to Apache Spark ecosystem. We're also a top contributor to Apache Hadoop ecosystem. And lately we're getting into the machine learning and deep learning and the AI space, especially integrating those capabilities into the Big Data eTcosystem. >> So I have to ask you a question to just sort of strategically, if we go back several years, you look at during the Unix days, you had a number of players developing hardware, microprocessors, there were risk-based systems, remember MIPS and of course IBM had one and Sun, et cetera, et cetera. Some of those live on but very, very small portion of the market. So Intel has dominated the general purpose market. So as Big Data became more mainstream, was there a discussion okay, we have to develop specialized processors, which I know Intel can do as well, or did you say, okay, we can actually optimize through software. Was that how you got here? Or am I understanding that? >> We believe definitely software optimization, optimizing through software is one thing that we do. That's why Intel actually have, you may not know this, Intel has one of the largest software divisions that focus on enabling and optimizing the solutions in Intel hardware. And of course we also have very aggressive product roadmap for advancing continuously our hardware products. And actually, you mentioned a general purpose computing. CPU today, in the Big Data market, still has more than 95% of the market. So that's still the biggest portion of the Big Data market. And will continue our advancement in that area. And obviously as the Ai and machine learning, deep learning use cases getting added into the Big Data domain and we are expanding our product portfolio into some other Silicon products. >> And of course that was kind of the big bet of, we want to bet on Intel. And I guess, I guess-- >> You should still do. >> And still do. And I guess, at the time, Seagate or other disk mounts. Now flash comes in. And of course now Spark with memory, it's really changing the game, isn't it? What does that mean for you and the software group? >> Right, so what do we... Actually, still we focus on the optimi-- Obviously at the hardware level, like Intel now, is not just offering the computing capability. We also offer very powerful network capability. We offer very good memory solutions, memory hardware. Like we keep talking about this non-volatile memory technologies. So for Big Data, we're trying to leverage all those newest hardware. And we're already working with many of our customers to help them, to improve their Big Data memory solution, the e-memory, analytics type of capability on Intel hardware, give them the most optimum performance and most secure result using Intel hardware. So that's definitely one thing that we continue to do. That's going to be our still our top priority. But we don't just limit our work to optimization. Because giving user the best experience, giving user the complete experience on Intel platform is our ultimate goal. So we work with our customers from financial services company. We work with folks from manufacturing. From transportation. And from other IOT internet of things segment. And to make sure that we give them the easiest Big Data analytics experience on Intel hardware. So when they are running those solutions they don't have to worry too much about how to make their application work with Intel hardware, and how to make it more performant with Intel hardware. Because that's the Intel software solution that's going to bridge the gap. We do that part of the job. And so that it will make our customers experience easier and more complete. >> You serve as the accelerant to the marketplace. Go ahead George. >> [Ziya] That's right. >> So Intel's big ML as the news product, as of the last month of so, open source solution. Tell us how there are other deep learning frameworks that aren't as fully integrated with Spark yet and where BigML fits in since we're at a Spark conference. How it backfills some functionality and how it really takes advantage of Intel hardware. >> George, just like you said, BigDL, we just open sourced a month ago. It's a deep learning framework that we organically built onto of Apache Spark. And it has quite some differences from the other mainstream deep learning frameworks like Caffe, Tensorflow, Torch and Tianu are you name it. The reason that we decide to work on this project was again, through our experience, working with our analytics, especially Big Data analytic customers, as they build their AI solutions or AI modules within their analytics application, it's funny, it's getting more and more difficult to build and integrate AI capability into their existing Big Data analytics ecosystem. They had to set up a different cluster and build a different set of AI capabilities using, let's say, one of the deep learning frameworks. And later they have to overcome a lot of challenges, for example, moving the model and data between the two different clusters and then make sure that AI result is getting integrated into the existing analytics platform or analytics application. So that was the primary driver. How do we make our customers experience easier? Do they have to leave their existing infrastructure and build a separate AI module? And can we do something organic on top of the existing Big Data platform, let's say Apache Spark? Can we just do something like that? So that the user can just leverage the existing infrastructure and make it a naturally integral part of the overall analytics ecosystem that they already have. So this was the primary driver. And also the other benefit that we see by integrating this BigDL framework naturally was the Big Data platform, is that it enables efficient scale-out and fault tolerance and elasticity and dynamic resource management. And those are the benefits that's on naturally brought by Big Data platform. And today, actually, just with this short period of time, we have already tested that BigDL can scale easily to tens or hundreds of nodes. So the scalability is also quite good. And another benefit with solution like BigDL, especially because it eliminates the need of setting a separate cluster and moving the model between different hardware clusters, you save your total cost of ownership. You can just leverage your existing infrastructure. There is no need to buy additional set of hardware and build another environment just for training the model. So that's another benefit that we see. And performance-wise, again we also tested BigDL with Caffe, Torch and TensorFlow. So the performance of BigDL on single node Xeon is orders of magnitude faster than out of box at open source Caffe, TensorFlow or Torch. So it definitely it's going to be very promising. >> Without the heavy lifting. >> And useful solution, yeah. >> Okay, can you talk about some of the use cases that you expect to see from your partners and your customers. >> Actually very good question. You know we already started a few engagement with some of the interested customers. The first customer is from Stuart Industry. Where improving the accuracy for steel-surface defect recognition is very important to it's quality control. So we worked with this customer in the last few months and built end-to-end image recognition pipeline using BigDL and Spark. And the customer just through phase one work, already improved it's defect recognition accuracy to 90%. And they're seeing a very yield improvement with steel production. >> And it used to by human? >> It used to be done by human, yes. >> And you said, what was the degree of improvement? >> 90, nine, zero. So now the accuracy is up to 90%. And another use case and financial services actually, is another use case, especially for fraud detection. So this customer, again I'm not at the customer's request, they're very sensitive the financial industry, they're very sensitive with releasing their name. So the customer, we're seeing is fraud risks were increasing tremendously. With it's wide range of products, services and customer interaction channels. So the implemented end-to-end deep learning solution using BigDL and Spark. And again, through phase one work, they are seeing the fraud detection rate improved 40 times, four, zero times. Through phase one work. We think there were more improvement that we can do because this is just a collaboration in the last few month. And we'll continue this collaboration with this customer. And we expect more use cases from other business segments. But that are the two that's already have BigDL running in production today. >> Well so the first, that's amazing. Essentially replacing the human, have to interact and be much more accurate. The fraud detection, is interesting because fraud detection has come a long way in the last 10 years as you know. Used to take six months, if they found fraud. And now it's minutes, seconds but there's a lot of false positives still. So do you see this technology helping address that problem? >> Yeah, we actually that's continuously improving the prediction accuracy is one of the goals. This is another reason why we need to bring AI and Big Data together. Because you need to train your model. You need to train your AI capabilities with more and more training data. So that you get much more improved training accuracy. Actually this is the biggest way of improving your training accuracy. So you need a huge infrastructure, a big data platform so that you can host and well manage your training data sets. And so that it can feed into your deep learning solution or module for continuously improving your training accuracy. So yes. >> This is a really key point it seems like. I would like to unpack that a little bit. So when we talk to customers and application vendors, it's that training feedback loop that gets the models smarter and smarter. So if you had one cluster for training that was with another framework, and then Spark was your... Rest of your analytics. How would training with feedback data work when you had two separate environments? >> You know that's one of the drivers why we're creating BigDL. Because, we tried to port, we did not come to BigDL at the very beginning. We tried to port the existing deep learning frameworks like Caffe and Tensorflow onto Spark. And you also probably saw some research papers folks. There's other teams that out there that's also trying to port Caffe, Tensorflow and other deep learning framework that's out there onto Spark. Because you have that need. You need to bring the two capabilities together. But the problem is that those systems were developed in a very traditional way. With Big Data, not yet in consideration, when those frameworks were created, were innovated. But now the need for converging the two becomes more and more clear, and more necessary. And that's we way, when we port it over, we said gosh, this is so difficult. First it's very challenging to integrate the two. And secondly the experience, after you've moved it over, is awkward. You're literally using Spark as a dispatcher. The integration is not coherent. It's like they're superficially integrated. So this is where we said, we got to do something different. We can not just superficially integrate two systems together. Can we do something organic on top of the Big Data platform, on top of Apache Spark? So that the integration between the training system, between the feature engineering, between data management can &be more consistent, can be more integrated. So that's exactly the driver for this work. >> That's huge. Seamless integration is one of the most overused phrases in the technology business. Superficial integration is maybe a better description for a lot of those so-called seamless integrations. You're claiming here that it's seamless integration. We're out of time but last word Intel and Spark Summit. What do you guys got going here? What's the vibe like? >> So actually tomorrow I have a keynote. I'm going to talk a little bit more about what we're doing with BigDL. Actually this is one of the big things that we're doing. And of course, in order for BigDL, system like BigDL or even other deep learning frameworks, to get optimum performance on Intel hardware, there's another item that we're highlighting at MKL, Intel optimized Math Kernel Library. It has a lot of common math routines. That's optimized for Intel processor using the latest instruction set. And that's already, today, integrated into the BigDL ecosystem.z6 So that's another thing that we're highlighting. And another thing is that those are just software. And at hardware level, during November, Intel's AI day, our executives from BK, Diane Bryant and Doug Fisher. They also highlighted the Nirvana product portfolio that's coming out. That will give you different hardware choices for AI. You can look at FPGA, Xeon Fi, Xeon and our new Nirvana based Silicon like Crestlake. And those are some good silicon products that you can expect in the future. Intel, taking us to Nirvana, touching every part of the ecosystem. Like you said, 95% share and in all parts of the business. Yeah, thanks very much for coming the Cube. >> Thank you, thank you for having me. >> You're welcome. Alright keep it right there. George and I will be back with our next guest. This is Spark Summit, #SparkSummit. We're the Cube. We'll be right back.
SUMMARY :
This is the Cube, covering Sparks Summit East 2017. This is the Cube and we're here live So software is our topic. Since I manage the Big Data engineering organization And make sure that we leverage the latest instructions set So Intel has dominated the general purpose market. So that's still the biggest portion of the Big Data market. And of course that was kind of the big bet of, And I guess, at the time, Seagate or other disk mounts. And to make sure that we give them the easiest You serve as the accelerant to the marketplace. So Intel's big ML as the news product, And also the other benefit that we see that you expect to see from your partners And the customer just through phase one work, So the customer, we're seeing is fraud risks in the last 10 years as you know. So that you get much more improved training accuracy. that gets the models smarter and smarter. So that the integration between the training system, Seamless integration is one of the most overused phrases integrated into the BigDL ecosystem We're the Cube.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
George Gilbert | PERSON | 0.99+ |
George | PERSON | 0.99+ |
Seagate | ORGANIZATION | 0.99+ |
Dave Alante | PERSON | 0.99+ |
40 times | QUANTITY | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
90% | QUANTITY | 0.99+ |
Dave | PERSON | 0.99+ |
tomorrow | DATE | 0.99+ |
two | QUANTITY | 0.99+ |
six months | QUANTITY | 0.99+ |
Ziya Ma | PERSON | 0.99+ |
November | DATE | 0.99+ |
Doug Fisher | PERSON | 0.99+ |
two systems | QUANTITY | 0.99+ |
tens | QUANTITY | 0.99+ |
more than 95% | QUANTITY | 0.99+ |
Intel | ORGANIZATION | 0.99+ |
Boston Massachusetts | LOCATION | 0.99+ |
one | QUANTITY | 0.99+ |
Boston | LOCATION | 0.99+ |
Spark | TITLE | 0.99+ |
first | QUANTITY | 0.99+ |
Ziya | PERSON | 0.99+ |
first customer | QUANTITY | 0.99+ |
a month ago | DATE | 0.98+ |
First | QUANTITY | 0.98+ |
Diane Bryant | PERSON | 0.98+ |
Stuart Industry | ORGANIZATION | 0.98+ |
zero times | QUANTITY | 0.98+ |
nine | QUANTITY | 0.98+ |
zero | QUANTITY | 0.97+ |
two capabilities | QUANTITY | 0.97+ |
Big Data | TITLE | 0.97+ |
BigDL | TITLE | 0.97+ |
Tensorflow | TITLE | 0.97+ |
95% share | QUANTITY | 0.96+ |
Caffe | TITLE | 0.96+ |
one thing | QUANTITY | 0.96+ |
four | QUANTITY | 0.96+ |
#SparkSummit | EVENT | 0.96+ |
one cluster | QUANTITY | 0.96+ |
up to 90% | QUANTITY | 0.96+ |
two different clusters | QUANTITY | 0.96+ |
Hadoop | TITLE | 0.96+ |
today | DATE | 0.96+ |
two separate environments | QUANTITY | 0.95+ |
Cube | COMMERCIAL_ITEM | 0.95+ |
Apache | ORGANIZATION | 0.94+ |
Databricks | ORGANIZATION | 0.94+ |
Spark Summit East 2017 | EVENT | 0.94+ |
Big Data | ORGANIZATION | 0.93+ |
Nirvana | LOCATION | 0.92+ |
MIPS | TITLE | 0.92+ |
Spark Summit East | LOCATION | 0.92+ |
hundreds of nodes | QUANTITY | 0.91+ |
secondly | QUANTITY | 0.9+ |
BigML | TITLE | 0.89+ |
Sparks Summit East 2017 | EVENT | 0.89+ |