Kelly Hoang, Gilead | WiDS 2023
(upbeat music) >> Welcome back to The Cubes coverage of WIDS 2023 the eighth Annual Women in Data Science Conference which is held at Stanford University. I'm your host, Lisa Martin. I'm really excited to be having some great co-hosts today. I've got Hannah Freytag with me, who is a data journalism master student at Stanford. We have yet another inspiring woman in technology to bring to you today. Kelly Hoang joins us, data scientist at Gilead. It's so great to have you, Kelly. >> Hi, thank you for having me today. I'm super excited to be here and share my journey with you guys. >> Let's talk about that journey. You recently got your PhD in information sciences, congratulations. >> Thank you. Yes, I just graduated, I completed my PhD in information sciences from University of Illinois Urbana-Champaign. And right now I moved to Bay Area and started my career as a data scientist at Gilead. >> And you're in better climate. Well, we do get snow here. >> Kelly: That's true. >> We proved that the last... And data science can show us all the climate change that's going on here. >> That's true. That's the topic of the data fund this year, right? To understand the changes in the climate. >> Yeah. Talk a little bit about your background. You were mentioning before we went live that you come from a whole family of STEM students. So you had that kind of in your DNA. >> Well, I consider myself maybe I was a lucky case. I did grew up in a family in the STEM environment. My dad actually was a professor in computer science. So I remember when I was at a very young age, I already see like datas, all of these computer science concepts. So grew up to be a data scientist is always something like in my mind. >> You aspired to be. >> Yes. >> I love that. >> So I consider myself in a lucky place in that way. But also, like during this journey to become a data scientist you need to navigate yourself too, right? Like you have this roots, like this foundation but then you still need to kind of like figure out yourself what is it? Is it really the career that you want to pursue? But I'm happy that I'm end up here today and where I am right now. >> Oh, we're happy to have you. >> Yeah. So you' re with Gilead now after you're completing your PhD. And were you always interested in the intersection of data science and health, or is that something you explored throughout your studies? >> Oh, that's an excellent question. So I did have background in computer science but I only really get into biomedical domain when I did my PhD at school. So my research during my PhD was natural language processing, NLP and machine learning and their applications in biomedical domains. And then when I graduated, I got my first job in Gilead Science. Is super, super close and super relevant to what my research at school. And at Gilead, I am working in the advanced analytics department, and our focus is to bring artificial intelligence and machine learning into supporting clinical decision making. And really the ultimate goal is how to use AI to accelerate the precision medicine. So yes, it's something very like... I'm very lucky to get the first job that which is very close to my research at school. >> That's outstanding. You know, when we talk about AI, we can't not talk about ethics, bias. >> Kelly: Right. >> We know there's (crosstalk) Yes. >> Kelly: In healthcare. >> Exactly. Exactly. Equities in healthcare, equities in so many things. Talk a little bit about what excites you about AI, what you're doing at Gilead to really influence... I mean this, we're talking about something that's influencing life and death situations. >> Kelly: Right. >> How are you using AI in a way that is really maximizing the opportunities that AI can bring and maximizing the value in the data, but helping to dial down some of the challenges that come with AI? >> Yep. So as you may know already with the digitalization of medical records, this is nowaday, we have a tremendous opportunities to fulfill the dream of precision medicine. And what I mean by precision medicines, means now the treatments for people can be really tailored to individual patients depending on their own like characteristic or demographic or whatever. And nature language processing and machine learning, and AI in general really play a key role in that innovation, right? Because like there's a vast amount of information of patients and patient journeys or patient treatment is conducted and recorded in text. So that's why our group was established. Actually our department, advanced analytic department in Gilead is pretty new. We established our department last year. >> Oh wow. >> But really our mission is to bring AI into this field because we see the opportunity now. We have a vast amount of data about patient about their treatments, how we can mine these data how we can understand and tailor the treatment to individuals. And give everyone better care. >> I love that you brought up precision medicine. You know, I always think, if I kind of abstract everything, technology, data, connectivity, we have this expectation in our consumer lives. We can get anything we want. Not only can we get anything we want but we expect whoever we're engaging with, whether it's Amazon or Uber or Netflix to know enough about me to get me that precise next step. I don't think about precision medicine but you bring up such a great point. We expect these tailored experiences in our personal lives. Why not expect that in medicine as well? And have a tailored treatment plan based on whatever you have, based on data, your genetics, and being able to use NLP, machine learning and AI to drive that is really exciting. >> Yeah. You recap it very well, but then you also bring up a good point about the challenges to bring AI into this field right? Definitely this is an emerging field, but also very challenging because we talk about human health. We are doing the work that have direct impact to human health. So everything need to be... Whatever model, machine learning model that you are building, developing you need to be precise. It need to be evaluated properly before like using as a product, apply into the real practice. So it's not like recommendation systems for shopping or anything like that. We're talking about our actual health. So yes, it's challenging that way. >> Yeah. With that, you already answered one of the next questions I had because like medical data and health data is very sensitive. And how you at Gilead, you know, try to protect this data to protect like the human beings, you know, who are the data in the end. >> The security aspect is critical. You bring up a great point about sensitive data. We think of healthcare as sensitive data. Or PII if you're doing a bank transaction. We have to be so careful with that. Where is security, data security, in your everyday work practices within data science? Is it... I imagine it's a fundamental piece. >> Yes, for sure. We at Gilead, for sure, in data science organization we have like intensive trainings for employees about data privacy and security, how you use the data. But then also at the same time, when we work directly with dataset, it's not that we have like direct information about patient at like very granular level. Everything is need to be kind of like anonymized at some points to protect patient privacy. So we do have rules, policies to follow to put that in place in our organization. >> Very much needed. So some of the conversations we heard, were you able to hear the keynote this morning? >> Yes. I did. I attended. Like I listened to all of them. >> Isn't it fantastic? >> Yes, yes. Especially hearing these women from different backgrounds, at different level of their professional life, sharing their journeys. It's really inspiring. >> And Hannah, and I've been talking about, a lot of those journeys look like this. >> I know >> You just kind of go... It's very... Yours is linear, but you're kind of the exception. >> Yeah, this is why I consider my case as I was lucky to grow up in STEM environment. But then again, back to my point at the beginning, sometimes you need to navigate yourself too. Like I did mention about, I did my pa... Sorry, my bachelor degree in Vietnam, in STEM and in computer science. And that time, there's only five girls in a class of 100 students. So I was not the smartest person in the room. And I kept my minority in that areas, right? So at some point I asked myself like, "Huh, I don't know. Is this really my careers." It seems that others, like male people or students, they did better than me. But then you kind of like, I always have this passion of datas. So you just like navigate yourself, keep pushing yourself over those journey. And like being where I am right now. >> And look what you've accomplished. >> Thank you. >> Yeah. That's very inspiring. And yeah, you mentioned how you were in the classroom and you were only one of the few women in the room. And what inspired or motivated you to keep going, even though sometimes you were at these points where you're like, "Okay, is this the right thing?" "Is this the right thing for me?" What motivated you to keep going? >> Well, I think personally for me, as a data scientist or for woman working in data science in general, I always try to find a good story from data. Like it's not, when you have a data set, well it's important for you to come up with methodologies, what are you going to do with the dataset? But I think it's even more important to kind of like getting the context of the dataset. Like think about it like what is the story behind this dataset? What is the thing that you can get out of it and what is the meaning behind? How can we use it to help use it in a useful way. To have in some certain use case. So I always have that like curiosity and encouragement in myself. Like every time someone handed me a data set, I always think about that. So it's helped me to like build up this kind of like passion for me. And then yeah. And then become a data scientist. >> So you had that internal drive. I think it's in your DNA as well. When you were one of five. You were 5% women in your computer science undergrad in Vietnam. Yet as Hannah was asking you, you found a lot of motivation from within. You embrace that, which is so key. When we look at some of the statistics, speaking of data, of women in technical roles. We've seen it hover around 25% the last few years, probably five to 10. I was reading some data from anitab.org over the weekend, and it shows that it's now, in 2022, the number of women in technical roles rose slightly, but it rose, 27.6%. So we're seeing the needle move slowly. But one of the challenges that still remains is attrition. Women who are leaving the role. You've got your PhD. You have a 10 month old, you've got more than one child. What would you advise to women who might be at that crossroads of not knowing should I continue my career in climbing the ladder, or do I just go be with my family or do something else? What's your advice to them in terms of staying the path? >> I think it's really down to that you need to follow your passion. Like in any kind of job, not only like in data science right? If you want to be a baker, or you want to be a chef, or you want to be a software engineer. It's really like you need to ask yourself is it something that you're really passionate about? Because if you really passionate about something, regardless how difficult it is, like regardless like you have so many kids to take care of, you have the whole family to take care of. You have this and that. You still can find your time to spend on it. So it's really like let yourself drive your own passion. Drive the way where you leading to. I guess that's my advice. >> Kind of like following your own North Star, right? Is what you're suggesting. >> Yeah. >> What role have mentors played in your career path, to where you are now? Have you had mentors on the way or people who inspired you? >> Well, I did. I certainly met quite a lot of women who inspired me during my journey. But right now, at this moment, one person, particular person that I just popped into my mind is my current manager. She's also data scientist. She's originally from Caribbean and then came to the US, did her PhDs too, and now led a group, all women. So believe it or not, I am in a group of all women working in data science. So she's really like someone inspire me a lot, like someone I look up to in this career. >> I love that. You went from being one of five females in a class of 100, to now having a PhD in information sciences, and being on an all female data science team. That's pretty cool. >> It's great. Yeah, it's great. And then you see how fascinating that, how things shift right? And now today we are here in a conference that all are women in data science. >> Yeah. >> It's extraordinary. >> So this year we're fortunate to have WIDS coincide this year with the actual International Women's Day, March 8th which is so exciting. Which is always around this time of year, but it's great to have it on the day. The theme of this International Women's Day this year is embrace equity. When you think of that theme, and your career path, and what you're doing now, and who inspires you, how can companies like Gilead benefit from embracing equity? What are your thoughts on that as a theme? >> So I feel like I'm very lucky to get my first job at Gilead. Not only because the work that we are doing here very close to my research at school, but also because of the working environment at Gilead. Inclusion actually is one of the five core values of Gilead. >> Nice. >> So by that, we means we try to create and creating a working environment that all of the differences are valued. Like regardless your background, your gender. So at Gilead, we have women at Gilead which is a global network of female employees, that help us to strengthen our inclusion culture, and also to influence our voices into the company cultural company policy and practice. So yeah, I'm very lucky to work in the environment nowadays. >> It's impressive to not only hear that you're on an all female data science team, but what Gilead is doing and the actions they're taking. It's one thing, we've talked about this Hannah, for companies, and regardless of industry, to say we're going to have 50% women in our workforce by 2030, 2035, 2040. It's a whole other ballgame for companies like Gilead to actually be putting pen to paper. To actually be creating a strategy that they're executing on. That's awesome. And it must feel good to be a part of a company who's really adapting its culture to be more inclusive, because there's so much value that comes from inclusivity, thought diversity, that ultimately will help Gilead produce better products and services. >> Yeah. Yes. Yeah. Actually this here is the first year Gilead is a sponsor of the WIDS Conference. And we are so excited to establish this relationship, and looking forward to like having more collaboration with WIDS in the future. >> Excellent. Kelly we've had such a pleasure having you on the program. Thank you for sharing your linear path. You are definitely a unicorn. We appreciate your insights and your advice to those who might be navigating similar situations. Thank you for being on theCUBE today. >> Thank you so much for having me. >> Oh, it was our pleasure. For our guests, and Hannah Freytag this is Lisa Martin from theCUBE. Coming to you from WIDS 2023, the eighth annual conference. Stick around. Our final guest joins us in just a minute.
SUMMARY :
in technology to bring to you today. and share my journey with you guys. You recently got your PhD And right now I moved to Bay Area And you're in better climate. We proved that the last... That's the topic of the So you had that kind of in your DNA. in the STEM environment. that you want to pursue? or is that something you and our focus is to bring we can't not talk about ethics, bias. what excites you about AI, really tailored to individual patients to bring AI into this field I love that you brought about the challenges to bring And how you at Gilead, you know, We have to be so careful with that. Everything is need to be So some of the conversations we heard, Like I listened to all of them. at different level of And Hannah, and I've kind of the exception. So you just like navigate yourself, And yeah, you mentioned how So it's helped me to like build up So you had that internal drive. I think it's really down to that you Kind of like following and then came to the US, five females in a class of 100, And then you see how fascinating that, but it's great to have it on the day. but also because of the So at Gilead, we have women at Gilead And it must feel good to be a part and looking forward to like Thank you for sharing your linear path. Coming to you from WIDS 2023,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Kelly | PERSON | 0.99+ |
Kelly Hoang | PERSON | 0.99+ |
Hannah Freytag | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Hannah | PERSON | 0.99+ |
Caribbean | LOCATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Vietnam | LOCATION | 0.99+ |
Gilead | ORGANIZATION | 0.99+ |
2030 | DATE | 0.99+ |
2035 | DATE | 0.99+ |
2022 | DATE | 0.99+ |
2040 | DATE | 0.99+ |
Bay Area | LOCATION | 0.99+ |
US | LOCATION | 0.99+ |
27.6% | QUANTITY | 0.99+ |
Uber | ORGANIZATION | 0.99+ |
50% | QUANTITY | 0.99+ |
Netflix | ORGANIZATION | 0.99+ |
5% | QUANTITY | 0.99+ |
last year | DATE | 0.99+ |
WIDS | ORGANIZATION | 0.99+ |
five | QUANTITY | 0.99+ |
five girls | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
first job | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
100 students | QUANTITY | 0.99+ |
March 8th | DATE | 0.99+ |
more than one child | QUANTITY | 0.99+ |
this year | DATE | 0.99+ |
International Women's Day | EVENT | 0.98+ |
five core | QUANTITY | 0.98+ |
Gilead Science | ORGANIZATION | 0.98+ |
10 | QUANTITY | 0.98+ |
one person | QUANTITY | 0.98+ |
eighth Annual Women in Data Science Conference | EVENT | 0.97+ |
five females | QUANTITY | 0.97+ |
University of Illinois Urbana-Champaign | ORGANIZATION | 0.97+ |
10 month old | QUANTITY | 0.96+ |
North Star | ORGANIZATION | 0.96+ |
theCUBE | ORGANIZATION | 0.93+ |
first year | QUANTITY | 0.93+ |
The Cubes | ORGANIZATION | 0.93+ |
around 25% | QUANTITY | 0.91+ |
one thing | QUANTITY | 0.89+ |
WIDS 2023 | EVENT | 0.88+ |
WIDS | EVENT | 0.88+ |
this morning | DATE | 0.88+ |
anitab.org | OTHER | 0.86+ |
Gilead | PERSON | 0.86+ |
Stanford | ORGANIZATION | 0.85+ |
100 | QUANTITY | 0.79+ |
Stanford University | LOCATION | 0.79+ |
eighth annual conference | QUANTITY | 0.78+ |
Myriam Fayad & Alexandre Lapene, TotalEnergies | WiDS 2023
(upbeat music) >> Hey, girls and guys. Welcome back to theCUBE. We are live at Stanford University, covering the 8th Annual Women in Data Science Conference. One of my favorite events. Lisa Martin here. Got a couple of guests from Total Energies. We're going to be talking all things data science, and I think you're going to find this pretty interesting and inspirational. Please welcome Alexandre Lapene, Tech Advisor Data Science at Total Energy. It's great to have you. >> Thank you. >> And Myriam Fayad is here as well, product and value manager at Total Energies. Great to have you guys on theCUBE today. Thank you for your time. >> Thank you for - >> Thank you for receiving us. >> Give the audience, Alexandre, we'll start with you, a little bit about Total Energies, so they understand the industry, and what it is that you guys are doing. >> Yeah, sure, sure. So Total Energies, is a former Total, so we changed name two years ago. So we are a multi-energy company now, working over 130 countries in the world, and more than 100,000 employees. >> Lisa: Oh, wow, big ... >> So we're a quite big company, and if you look at our new logo, you will see there are like seven colors. That's the seven energy that we basically that our business. So you will see the red for the oil, the blue for the gas, because we still have, I mean, a lot of oil and gas, but you will see other color, like blue for hydrogen. >> Lisa: Okay. >> Green for gas, for biogas. >> Lisa: Yeah. >> And a lot of other solar and wind. So we're definitely multi-energy company now. >> Excellent, and you're both from Paris? I'm jealous, I was supposed to go. I'm not going to be there next month. Myriam, talk a little bit about yourself. I'd love to know a little bit about your role. You're also a WiDS ambassador this year. >> Myriam: Yes. >> Lisa: Which is outstanding, but give us a little bit of your background. >> Yes, so today I'm a product manager at the Total Energies' Digital Factory. And at the Digital Factory, our role is to develop digital solutions for all of the businesses of Total Energies. And as a background, I did engineering school. So, and before that I, I would say, I wasn't really aware of, I had never asked myself if being a woman could stop me from being, from doing what I want to do in the professional career. But when I started my engineering school, I started seeing that women are becoming, I would say, increasingly rare in the environment >> Lisa: Yes. >> that, where I was evolving. >> Lisa: Yes. >> So that's why I was, I started to think about, about such initiatives. And then when I started working in the tech field, that conferred me that women are really rare in the tech field and data science field. So, and at Total Energies, I met ambassadors of, of the WiDS initiatives. And that's how I, I decided to be a WiDS Ambassador, too. So our role is to organize events locally in the countries where we work to raise awareness about the importance of having women in the tech and data fields. And also to talk about the WiDS initiative more globally. >> One of my favorite things about WiDS is it's this global movement, it started back in 2015. theCUBE has been covering it since then. I think I've been covering it for theCUBE since 2017. It's always a great day full of really positive messages. One of the things that we talk a lot about when we're focusing on the Q1 Women in Tech, or women in technical roles is you can't be what you can't see. We need to be able to see these role models, but also it, we're not just talking about women, we're talking about underrepresented minorities, we're talking about men like you, Alexander. Talk to us a little bit about what your thoughts are about being at a Women and Data Science Conference and your sponsorship, I'm sure, of many women in Total, and other industries that appreciate having you as a guide. >> Yeah, yeah, sure. First I'm very happy because I'm back to Stanford. So I did my PhD, postdoc, sorry, with Margot, I mean, back in 20, in 2010, so like last decade. >> Lisa: Yeah, yep. >> I'm a film mechanics person, so I didn't start as data scientist, but yeah, WiDS is always, I mean, this great event as you describe it, I mean, to see, I mean it's growing every year. I mean, it's fantastic. And it's very, I mean, I mean, it's always also good as a man, I mean, to, to be in the, in the situation of most of the women in data science conferences. And when Margo, she asked at the beginning of the conference, "Okay, how many men do we have? Okay, can you stand up?" >> Lisa: Yes. I saw that >> It was very interesting because - >> Lisa: I could count on one hand. >> What, like 10 or ... >> Lisa: Yeah. >> Maximum. >> Lisa: Yeah. >> And, and I mean, you feel that, I mean, I mean you could feel what what it is to to be a woman in the field and - >> Lisa: Absolutely. >> Alexandre: That's ... >> And you, sounds like you experienced it. I experienced the same thing. But one of the things that fascinates me about data science is all of the different real world problems it's helping to solve. Like, I keep saying this, we're, we're in California, I'm a native Californian, and we've been in an extreme drought for years. Well, we're getting a ton of rain and snow this year. Climate change. >> Guests: Yeah. We're not used to driving in the rain. We are not very good at it either. But the, just thinking about data science as a facilitator of its understanding climate change better; to be able to make better decisions, predictions, drive better outcomes, or things like, police violence or healthcare inequities. I think the power of data science to help unlock a lot of the unknown is so great. And, and we need that thought diversity. Miriam, you're talking about being in engineering. Talk to me a little bit about what projects interest you with respect to data science, and how you are involved in really creating more diversity and thought. >> Hmm. In fact, at Total Energies in addition to being an energy company we're also a data company in the sense that we produce a lot of data in our activities. For example with the sensors on the fuel on the platforms. >> Lisa: Yes. >> Or on the wind turbines, solar panels and even data related to our clients. So what, what is really exciting about being, working in the data science field at Total Energies is that we really feel the impact of of the project that we're working on. And we really work with the business to understand their problems. >> Lisa: Yeah. >> Or their issues and try to translate it to a technical problem and to solve it with the data that we have. So that's really exciting, to feel the impact of the projects we're working on. So, to take an example, maybe, we know that one of the challenges of the energy transition is the storage of of energy coming from renewable power. >> Yes. >> So I'm working currently on a project to improve the process of creating larger batteries that will help store this energy, by collecting the data, and helping the business to improve the process of creating these batteries. To make it more reliable, and with a better quality. So this is a really interesting project we're working on. >> Amazing, amazing project. And, you know, it's, it's fun I think to think of all of the different people, communities, countries, that are impacted by what you're doing. Everyone, everyone knows about data. Sometimes we think about it as we're paying we're always paying for a lot of data on our phone or "data rates may apply" but we may not be thinking about all of the real world impact that data science is making in our lives. We have this expectation in our personal lives that we're connected 24/7. >> Myriam: Yeah. >> I can get whatever I want from my phone wherever I am in the world. And that's all data driven. And we expect that if I'm dealing with Total Energies, or a retailer, or a car dealer that they're going to have the data, the data to have a personal conversation, conversation with me. We have this expectation. I don't think a lot of people that aren't in data science or technology really realize the impact of data all around their lives. Alexander, talk about some of the interesting data science projects that you're working on. >> There's one that I'm working right now, so I stake advisor. I mean, I'm not the one directly working on it. >> Lisa: Okay. >> But we have, you know, we, we are from the digital factory where we, we make digital products. >> Lisa: Okay. >> And we have different squads. I mean, it's a group of different people with different skills. And one of, one of the, this squad, they're, they're working on the on, on the project that is about safety. We have a lot of site, work site on over the world where we deploy solar panels on on parkings, on, on buildings everywhere. >> Lisa: Okay. Yeah. >> And there's, I mean, a huge, I mean, but I mean, we, we have a lot of, of worker and in term of safety we want to make sure that the, they work safely and, and we want to prevent accidents. So what we, what we do is we, we develop some computer vision approach to help them at improving, you know, the, the, the way they work. I mean the, the basic things is, is detecting, detecting some equipment like the, the the mean the, the vest and so on. But we, we, we, we are working, we're working to really extend that to more concrete recommendation. And that's one a very exciting project. >> Lisa: Yeah. >> Because it's very concrete. >> Yeah. >> And also, I, I'm coming from the R&D of the company and that's one, that's one of this project that started in R&D and is now into the Digital Factory. And it will become a real product deployed over the world on, on our assets. So that's very great. >> The influence and the impact that data can have on every business always is something that, we could talk about that for a very long time. >> Yeah. >> But one of the things I want to address is there, I'm not sure if you're familiar with AnitaB.org the Grace Hopper Institute? It's here in the States and they do this great event every year. It's very pro-women in technology and technical roles. They do a lot of, of survey of, of studies. So they have data demonstrating where are we with respect to women in technical roles. And we've been talking about it for years. It's been, for a while hovering around 25% of technical roles are held by women. I noticed in the AnitaB.org research findings from 2022, It's up to 27.6% I believe. So we're seeing those numbers slowly go up. But one of the things that's a challenge is attrition; of women getting in the roles and then leaving. Miryam, as a woman in, in technology. What inspires you to continue doing what you're doing and to elevate your career in data science? >> What motivates me, is that data science, we really have to look at it as a mean to solve a problem and not a, a fine, a goal in itself. So the fact that we can apply data science to so many fields and so many different projects. So here, for example we took examples of more industrial, maybe, applications. But for example, recently I worked on, on a study, on a data science study to understand what to, to analyze Google reviews of our clients on the service stations and to see what are the the topics that, that are really important to them. So we really have a, a large range of topics, and a diversity of topics that are really interesting, so. >> And that's so important, the diversity of topics alone. There's, I think we're just scratching the surface. We're just at the very beginning of what data science can empower for our daily lives. For businesses, small businesses, large businesses. I'd love to get your perspective as our only male on the show today, Alexandre, you have that elite title. The theme of International Women's Day this year which is today, March 8th, is "Embrace equity." >> Alexandre: Yes. >> Lisa: What is that, when you hear that theme as as a male in technology, as a male in the, in a role where you can actually elevate women and really bring in that thought diversity, what is embracing equity, what does it look like to you? >> To me, it, it's really, I mean, because we, we always talk about how we can, you know, I mean improve, but actually we are fixing a problem, an issue. I mean, it's such a reality. I mean, and the, the reality and and I mean, and force in, in the company. And that's, I think in Total Energy, we, we still have, I mean things, I mean, we, we haven't reached our objective but we're working hard and especially at the Digital Factory to, to, to improve on that. And for example, we have 40% of our women in tech. >> Lisa: 40? >> 40% of our tech people that are women. >> Lisa: Wow, that's fantastic! >> Yeah. That's, that's ... >> You're way ahead of, of the global average. >> Alexandre: Yeah. Yeah. >> That outstanding. >> We're quite proud of that. >> You should be. >> But we, we still, we still know that we, we have at least 10% >> Lisa: Yes. because it's not 50. The target is, the target is to 50 or more. And, and, but I want to insist on the fact that we have, we are correcting an issue. We are fixing an issue. We're not trying to improve something. I mean, that, that's important to have that in mind. >> Lisa: It is. Absolutely. >> Yeah. >> Miryam, I'd love to get your advice to your younger self, before you studied engineering. Obviously you had an interest when you were younger. What advice would you give to young Miriam now, looking back at what you've accomplished and being one of our female, visible females, in a technical role? What do you, what would you say to your younger self? >> Maybe I would say to continue as I started. So as I was saying at the beginning of the interview, when I was at high school, I have never felt like being a woman could stop me from doing anything. >> Lisa: Yeah. Yeah. >> So maybe to continue thinking this way, and yeah. And to, to stay here for, to, to continue this way. Yeah. >> Lisa: That's excellent. Sounds like you have the confidence. >> Mm. Yeah. >> And that's something that, that a lot of people ... I struggled with it when I was younger, have the confidence, "Can I do this?" >> Alexandre: Yeah. >> "Should I do this?" >> Myriam: Yeah. >> And you kind of went, "Why not?" >> Myriam: Yes. >> Which is, that is such a great message to get out to our audience and to everybody else's. Just, "I'm interested in this. I find it fascinating. Why not me?" >> Myriam: Yeah. >> Right? >> Alexandre: Yeah, true. >> And by bringing out, I think, role models as we do here at the conference, it's a, it's a way to to help young girls to be inspired and yeah. >> Alexandre: Yeah. >> We need to have women in leadership positions that we can see, because there's a saying here that we say a lot in the States, which is: "You can't be what you can't see." >> Alexandre: Yeah, that's true. >> And so we need more women and, and men supporting women and underrepresented minorities. And the great thing about WiDS is it does just that. So we thank you so much for your involvement in WiDS, Ambassador, our only male on the program today, Alexander, we thank you. >> I'm very proud of it. >> Awesome to hear that Total Energies has about 40% of females in technical roles and you're on that path to 50% or more. We, we look forward to watching that journey and we thank you so much for joining us on the show today. >> Alexandre: Thank you. >> Myriam: Thank you. >> Lisa: All right. For my guests, I'm Lisa Martin. You're watching theCUBE Live from Stanford University. This is our coverage of the eighth Annual Women in Data Science Conference. We'll be back after a short break, so stick around. (upbeat music)
SUMMARY :
covering the 8th Annual Women Great to have you guys on theCUBE today. and what it is that you guys are doing. So we are a multi-energy company now, That's the seven energy that we basically And a lot of other solar and wind. I'm not going to be there next month. bit of your background. for all of the businesses of the WiDS initiatives. One of the things that we talk a lot about I'm back to Stanford. of most of the women in of the different real world problems And, and we need that thought diversity. in the sense that we produce a lot of the project that we're working on. the data that we have. and helping the business all of the real world impact have the data, the data to I mean, I'm not the one But we have, you know, we, on the project that is about safety. and in term of safety we and is now into the Digital Factory. The influence and the I noticed in the AnitaB.org So the fact that we can apply data science as our only male on the show today, and I mean, and force in, in the company. of the global average. on the fact that we have, Lisa: It is. Miryam, I'd love to get your beginning of the interview, So maybe to continue Sounds like you have the confidence. And that's something that, and to everybody else's. here at the conference, We need to have women So we thank you so much for and we thank you so much for of the eighth Annual Women
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Miriam | PERSON | 0.99+ |
Myriam Fayad | PERSON | 0.99+ |
Alexander | PERSON | 0.99+ |
Alexandre | PERSON | 0.99+ |
Myriam | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Total Energies | ORGANIZATION | 0.99+ |
Lisa | PERSON | 0.99+ |
Miryam | PERSON | 0.99+ |
Margo | PERSON | 0.99+ |
Alexandre Lapene | PERSON | 0.99+ |
2010 | DATE | 0.99+ |
Paris | LOCATION | 0.99+ |
2022 | DATE | 0.99+ |
2015 | DATE | 0.99+ |
Grace Hopper Institute | ORGANIZATION | 0.99+ |
Total Energy | ORGANIZATION | 0.99+ |
40 | QUANTITY | 0.99+ |
50% | QUANTITY | 0.99+ |
California | LOCATION | 0.99+ |
50 | QUANTITY | 0.99+ |
40% | QUANTITY | 0.99+ |
next month | DATE | 0.99+ |
Margot | PERSON | 0.99+ |
more than 100,000 employees | QUANTITY | 0.99+ |
two years ago | DATE | 0.99+ |
TotalEnergies | ORGANIZATION | 0.99+ |
today | DATE | 0.99+ |
AnitaB.org | ORGANIZATION | 0.99+ |
both | QUANTITY | 0.99+ |
10 | QUANTITY | 0.99+ |
First | QUANTITY | 0.99+ |
8th Annual Women in Data Science Conference | EVENT | 0.99+ |
International Women's Day | EVENT | 0.99+ |
Stanford University | ORGANIZATION | 0.98+ |
Total | ORGANIZATION | 0.98+ |
2017 | DATE | 0.98+ |
over 130 countries | QUANTITY | 0.98+ |
ORGANIZATION | 0.98+ | |
One | QUANTITY | 0.98+ |
seven colors | QUANTITY | 0.98+ |
Keynote Analysis | WiDS 2023
(ambient music) >> Good morning, everyone. Lisa Martin with theCUBE, live at the eighth Annual Women in Data Science Conference. This is one of my absolute favorite events of the year. We engage with tons of great inspirational speakers, men and women, and what's happening with WiDS is a global movement. I've got two fabulous co-hosts with me today that you're going to be hearing and meeting. Please welcome Tracy Zhang and Hannah Freitag, who are both from the sata journalism program, master's program, at Stanford. So great to have you guys. >> So excited to be here. >> So data journalism's so interesting. Tracy, tell us a little bit about you, what you're interested in, and then Hannah we'll have you do the same thing. >> Yeah >> Yeah, definitely. I definitely think data journalism is very interesting, and in fact, I think, what is data journalism? Is definitely one of the big questions that we ask during the span of one year, which is the length of our program. And yeah, like you said, I'm in this data journalism master program, and I think coming in I just wanted to pivot from my undergrad studies, which is more like a traditional journalism, into data. We're finding stories through data, so that's why I'm also very excited about meeting these speakers for today because they're all, they have different backgrounds, but they all ended up in data science. So I think they'll be very inspirational and I can't wait to talk to them. >> Data in stories, I love that. Hannah, tell us a little bit about you. >> Yeah, so before coming to Stanford, I was a research assistant at Humboldt University in Berlin, so I was in political science research. And I love to work with data sets and data, but I figured that, for me, I don't want this story to end up in a research paper, which is only very limited in terms of the audience. And I figured, okay, data journalism is the perfect way to tell stories and use data to illustrate anecdotes, but to make it comprehensive and accessible for a broader audience. So then I found this program at Stanford and I was like, okay, that's the perfect transition from political science to journalism, and to use data to tell data-driven stories. So I'm excited to be in this program, I'm excited for the conference today and to hear from these amazing women who work in data science. >> You both brought up great points, and we were chatting earlier that there's a lot of diversity in background. >> Tracy: Definitely. >> Not everyone was in STEM as a young kid or studied computer science. Maybe some are engineering, maybe some are are philosophy or economic, it's so interesting. And what I find year after year at WiDS is it brings in so much thought diversity. And that's what being data-driven really demands. It demands that unbiased approach, that diverse, a spectrum of diverse perspectives, and we definitely get that at WiDS. There's about 350 people in person here, but as I mentioned in the opening, hundreds of thousands will engage throughout the year, tens of thousands probably today at local events going on across the globe. And it just underscores the importance of every organization, whether it's a bank or a grocer, has to be data-driven. We have that expectation as consumers in our consumer lives, and even in our business lives, that I'm going to engage with a business, whatever it is, and they're going to know about me, they're going to deliver me a personalized experience that's relevant to me and my history. And all that is powered by data science, which is I think it's fascinating. >> Yeah, and the great way is if you combine data with people. Because after all, large data sets, they oftentimes consist of stories or data that affects people. And to find these stories or advanced research in whatever fields, maybe in the financial business, or in health, as you mentioned, the variety of fields, it's very powerful, powerful tool to use. >> It's a very power, oh, go ahead Tracy. >> No, definitely. I just wanted to build off of that. It's important to put a face on data. So a dataset without a name is just some numbers, but if there's a story, then I think it means something too. And I think Margot was talking about how data science is about knowing or understanding the past, I think that's very interesting. That's a method for us to know who we are. >> Definitely. There's so many opportunities. I wanted to share some of the statistics from AnitaB.org that I was just looking at from 2022. We always talk at events like WiDS, and some of the other women in tech things, theCUBE is very much pro-women in tech, and has been for a very long, since the beginning of theCUBE. But we've seen the numbers of women technologists historically well below 25%, and we see attrition rates are high. And so we often talk about, well, what can we do? And part of that is raising the awareness. And that's one of the great things about WiDS, especially WiDS happening on International Women's Day, today, March 8th, and around event- >> Tracy: A big holiday. >> Exactly. But one of the nice things I was looking at, the AnitaB.org research, is that representation of tech women is on the rise, still below pre-pandemic levels, but it's actually nearly 27% of women in technical roles. And that's an increase, slow increase, but the needle is moving. We're seeing much more gender diversity across a lot of career levels, which is exciting. But some of the challenges remain. I mean, the representation of women technologists is growing, except at the intern level. And I thought that was really poignant. We need to be opening up that pipeline and going younger. And you'll hear a lot of those conversations today about, what are we doing to reach girls in grade school, 10 year olds, 12 year olds, those in high school? How do we help foster them through their undergrad studies- >> And excite them about science and all these fields, for sure. >> What do you think, Hannah, on that note, and I'll ask you the same question, what do you think can be done? The theme of this year's International Women's Day is Embrace Equity. What do you think can be done on that intern problem to help really dial up the volume on getting those younger kids interested, one, earlier, and two, helping them stay interested? >> Yeah. Yeah, that's a great question. I think it's important to start early, as you said, in school. Back in the day when I went to high school, we had this one day per year where we could explore as girls, explore a STEM job and go into the job for one day and see how it's like to work in a, I dunno, in IT or in data science, so that's a great first step. But as you mentioned, it's important to keep girls and women excited about this field and make them actually pursue this path. So I think conferences or networking is very powerful. Also these days with social media and technology, we have more ability and greater ways to connect. And I think we should even empower ourselves even more to pursue this path if we're interested in data science, and not be like, okay, maybe it's not for me, or maybe as a woman I have less chances. So I think it's very important to connect with other women, and this is what WiDS is great about. >> WiDS is so fantastic for that network effect, as you talked about. It's always such, as I was telling you about before we went live, I've covered five or six WiDS for theCUBE, and it's always such a day of positivity, it's a day of of inclusivity, which is exactly what Embrace Equity is really kind of about. Tracy, talk a little bit about some of the things that you see that will help with that hashtag Embrace Equity kind of pulling it, not just to tech. Because we're talking and we saw Meta was a keynote who's going to come to talk with Hannah and me in a little bit, we see Total Energies on the program today, we see Microsoft, Intuit, Boeing Air Company. What are some of the things you think that can be done to help inspire, say, little Tracy back in the day to become interested in STEM or in technology or in data? What do you think companies can and should be doing to dial up the volume for those youngsters? >> Yeah, 'cause I think somebody was talking about, one of the keynote speakers was talking about how there is a notion that girls just can't be data scientists. girls just can't do science. And I think representation definitely matters. If three year old me see on TV that all the scientists are women, I think I would definitely have the notion that, oh, this might be a career choice for me and I can definitely also be a scientist if I want. So yeah, I think representation definitely matters and that's why conference like this will just show us how these women are great in their fields. They're great data scientists that are bringing great insight to the company and even to the social good as well. So yeah, I think that's very important just to make women feel seen in this data science field and to listen to the great woman who's doing amazing work. >> Absolutely. There's a saying, you can't be what you can't see. >> Exactly. >> And I like to say, I like to flip it on its head, 'cause we can talk about some of the negatives, but there's a lot of positives and I want to share some of those in a minute, is that we need to be, that visibility that you talked about, the awareness that you talked about, it needs to be there but it needs to be sustained and maintained. And an organization like WiDS and some of the other women in tech events that happen around the valley here and globally, are all aimed at raising the profile of these women so that the younger, really, all generations can see what they can be. We all, the funny thing is, we all have this expectation whether we're transacting on Uber ride or we are on Netflix or we're buying something on Amazon, we can get it like that. They're going to know who I am, they're going to know what I want, they're going to want to know what I just bought or what I just watched. Don't serve me up something that I've already done that. >> Hannah: Yeah. >> Tracy: Yeah. >> So that expectation that everyone has is all about data, though we don't necessarily think about it like that. >> Hannah: Exactly. >> Tracy: Exactly. >> But it's all about the data that, the past data, the data science, as well as the realtime data because we want to have these experiences that are fresh, in the moment, and super relevant. So whether women recognize it or not, they're data driven too. Whether or not you're in data science, we're all driven by data and we have these expectations that every business is going to meet it. >> Exactly. >> Yeah. And circling back to young women, I think it's crucial and important to have role models. As you said, if you see someone and you're younger and you're like, oh I want to be like her. I want to follow this path, and have inspiration and a role model, someone you look up to and be like, okay, this is possible if I study the math part or do the physics, and you kind of have a goal and a vision in mind, I think that's really important to drive you. >> Having those mentors and sponsors, something that's interesting is, I always, everyone knows what a mentor is, somebody that you look up to, that can guide you, that you admire. I didn't learn what a sponsor was until a Women in Tech event a few years ago that we did on theCUBE. And I was kind of, my eyes were open but I didn't understand the difference between a mentor and a sponsor. And then it got me thinking, who are my sponsors? And I started going through LinkedIn, oh, he's a sponsor, she's a sponsor, people that help really propel you forward, your recommenders, your champions, and it's so important at every level to build that network. And we have, to your point, Hannah, there's so much potential here for data drivenness across the globe, and there's so much potential for women. One of the things I also learned recently , and I wanted to share this with you 'cause I'm not sure if you know this, ChatGPT, exploding, I was on it yesterday looking at- >> Everyone talking about it. >> What's hot in data science? And it was kind of like, and I actually asked it, what was hot in data science in 2023? And it told me that it didn't know anything prior to 2021. >> Tracy: Yes. >> Hannah: Yeah. >> So I said, Oh, I'm so sorry. But everyone's talking about ChatGPT, it is the most advanced AI chatbot ever released to the masses, it's on fire. They're likening it to the launch of the iPhone, 100 million-plus users. But did you know that the CTO of ChatGPT is a woman? >> Tracy: I did not know, but I learned that. >> I learned that a couple days ago, Mira Murati, and of course- >> I love it. >> She's been, I saw this great profile piece on her on Fast Company, but of course everything that we're hearing about with respect to ChatGPT, a lot on the CEO. But I thought we need to help dial up the profile of the CTO because she's only 35, yet she is at the helm of one of the most groundbreaking things in our lifetime we'll probably ever see. Isn't that cool? >> That is, yeah, I completely had no idea. >> I didn't either. I saw it on LinkedIn over the weekend and I thought, I have to talk about that because it's so important when we talk about some of the trends, other trends from AnitaB.org, I talked about some of those positive trends. Overall hiring has rebounded in '22 compared to pre-pandemic levels. And we see also 51% more women being hired in '22 than '21. So the data, it's all about data, is showing us things are progressing quite slowly. But one of the biggest challenges that's still persistent is attrition. So we were talking about, Hannah, what would your advice be? How would you help a woman stay in tech? We saw that attrition last year in '22 according to AnitaB.org, more than doubled. So we're seeing women getting into the field and dropping out for various reasons. And so that's still an extent concern that we have. What do you think would motivate you to stick around if you were in a technical role? Same question for you in a minute. >> Right, you were talking about how we see an increase especially in the intern level for women. And I think if, I don't know, this is a great for a start point for pushing the momentum to start growth, pushing the needle rightwards. But I think if we can see more increase in the upper level, the women representation in the upper level too, maybe that's definitely a big goal and something we should work towards to. >> Lisa: Absolutely. >> But if there's more representation up in the CTO position, like in the managing level, I think that will definitely be a great factor to keep women in data science. >> I was looking at some trends, sorry, Hannah, forgetting what this source was, so forgive me, that was showing that there was a trend in the last few years, I think it was Fast Company, of more women in executive positions, specifically chief operating officer positions. What that hasn't translated to, what they thought it might translate to, is more women going from COO to CEO and we're not seeing that. We think of, if you ask, name a female executive that you'd recognize, everyone would probably say Sheryl Sandberg. But I was shocked to learn the other day at a Women in Tech event I was doing, that there was a survey done by this organization that showed that 78% of people couldn't identify. So to your point, we need more of them in that visible role, in the executive suite. >> Tracy: Exactly. >> And there's data that show that companies that have women, companies across industries that have women in leadership positions, executive positions I should say, are actually more profitable. So it's kind of like, duh, the data is there, it's telling you this. >> Hannah: Exactly. >> Right? >> And I think also a very important point is work culture and the work environment. And as a woman, maybe if you enter and you work two or three years, and then you have to oftentimes choose, okay, do I want family or do I want my job? And I think that's one of the major tasks that companies face to make it possible for women to combine being a mother and being a great data scientist or an executive or CEO. And I think there's still a lot to be done in this regard to make it possible for women to not have to choose for one thing or the other. And I think that's also a reason why we might see more women at the entry level, but not long-term. Because they are punished if they take a couple years off if they want to have kids. >> I think that's a question we need to ask to men too. >> Absolutely. >> How to balance work and life. 'Cause we never ask that. We just ask the woman. >> No, they just get it done, probably because there's a woman on the other end whose making it happen. >> Exactly. So yeah, another thing to think about, another thing to work towards too. >> Yeah, it's a good point you're raising that we have this conversation together and not exclusively only women, but we all have to come together and talk about how we can design companies in a way that it works for everyone. >> Yeah, and no slight to men at all. A lot of my mentors and sponsors are men. They're just people that I greatly admire who saw raw potential in me 15, 18 years ago, and just added a little water to this little weed and it started to grow. In fact, theCUBE- >> Tracy: And look at you now. >> Look at me now. And theCUBE, the guys Dave Vellante and John Furrier are two of those people that are sponsors of mine. But it needs to be diverse. It needs to be diverse and gender, it needs to include non-binary people, anybody, shouldn't matter. We should be able to collectively work together to solve big problems. Like the propaganda problem that was being discussed in the keynote this morning with respect to China, or climate change. Climate change is a huge challenge. Here, we are in California, we're getting an atmospheric river tomorrow. And Californians and rain, we're not so friendly. But we know that there's massive changes going on in the climate. Data science can help really unlock a lot of the challenges and solve some of the problems and help us understand better. So there's so much real-world implication potential that being data-driven can really lead to. And I love the fact that you guys are studying data journalism. You'll have to help me understand that even more. But we're going to going to have great conversations today, I'm so excited to be co-hosting with both of you. You're going to be inspired, you're going to learn, they're going to learn from us as well. So let's just kind of think of this as a community of men, women, everything in between to really help inspire the current generations, the future generations. And to your point, let's help women feel confident to be able to stay and raise their hand for fast-tracking their careers. >> Exactly. >> What are you guys, last minute, what are you looking forward to most for today? >> Just meeting these great women, I can't wait. >> Yeah, learning from each other. Having this conversation about how we can make data science even more equitable and hear from the great ideas that all these women have. >> Excellent, girls, we're going to have a great day. We're so glad that you're here with us on theCUBE, live at Stanford University, Women in Data Science, the eighth annual conference. I'm Lisa Martin, my two co-hosts for the day, Tracy Zhang, Hannah Freitag, you're going to be seeing a lot of us, we appreciate. Stick around, our first guest joins Hannah and me in just a minute. (ambient music)
SUMMARY :
So great to have you guys. and then Hannah we'll have Is definitely one of the Data in stories, I love that. And I love to work with and we were chatting earlier and they're going to know about me, Yeah, and the great way is And I think Margot was And part of that is raising the awareness. I mean, the representation and all these fields, for sure. and I'll ask you the same question, I think it's important to start early, What are some of the things and even to the social good as well. be what you can't see. and some of the other women in tech events So that expectation that everyone has that every business is going to meet it. And circling back to young women, and I wanted to share this with you know anything prior to 2021. it is the most advanced Tracy: I did not of one of the most groundbreaking That is, yeah, I and I thought, I have to talk about that for pushing the momentum to start growth, to keep women in data science. So to your point, we need more that have women in leadership positions, and the work environment. I think that's a question We just ask the woman. a woman on the other end another thing to work towards too. and talk about how we can design companies and it started to grow. And I love the fact that you guys great women, I can't wait. and hear from the great ideas Women in Data Science, the
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Mira Murati | PERSON | 0.99+ |
Hannah | PERSON | 0.99+ |
Tracy | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Hannah Freitag | PERSON | 0.99+ |
Tracy Zhang | PERSON | 0.99+ |
California | LOCATION | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Sheryl Sandberg | PERSON | 0.99+ |
two | QUANTITY | 0.99+ |
Tracy Zhang | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
Boeing Air Company | ORGANIZATION | 0.99+ |
Berlin | LOCATION | 0.99+ |
one year | QUANTITY | 0.99+ |
Intuit | ORGANIZATION | 0.99+ |
2023 | DATE | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
78% | QUANTITY | 0.99+ |
iPhone | COMMERCIAL_ITEM | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Margot | PERSON | 0.99+ |
tens of thousands | QUANTITY | 0.99+ |
one day | QUANTITY | 0.99+ |
International Women's Day | EVENT | 0.99+ |
2022 | DATE | 0.99+ |
yesterday | DATE | 0.99+ |
last year | DATE | 0.99+ |
tomorrow | DATE | 0.99+ |
three years | QUANTITY | 0.99+ |
10 year | QUANTITY | 0.99+ |
12 year | QUANTITY | 0.99+ |
three year | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
Humboldt University | ORGANIZATION | 0.99+ |
both | QUANTITY | 0.99+ |
International Women's Day | EVENT | 0.99+ |
hundreds of thousands | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
'22 | DATE | 0.98+ |
today | DATE | 0.98+ |
WiDS | EVENT | 0.98+ |
John Furrier | PERSON | 0.98+ |
Uber | ORGANIZATION | 0.98+ |
two co-hosts | QUANTITY | 0.98+ |
35 | QUANTITY | 0.98+ |
eighth Annual Women in Data Science Conference | EVENT | 0.97+ |
first step | QUANTITY | 0.97+ |
first guest | QUANTITY | 0.97+ |
one thing | QUANTITY | 0.97+ |
five | QUANTITY | 0.97+ |
six | QUANTITY | 0.97+ |
'21 | DATE | 0.97+ |
about 350 people | QUANTITY | 0.96+ |
100 million-plus users | QUANTITY | 0.95+ |
2021 | DATE | 0.95+ |
theCUBE | ORGANIZATION | 0.95+ |
AnitaB.org | ORGANIZATION | 0.95+ |
Stanford | ORGANIZATION | 0.95+ |