Ana Pinheiro Privette, Amazon | Amazon re:MARS 2022
>>Okay, welcome back. Everyone. Live cube coverage here in Las Vegas for Amazon re Mars hot event, machine learning, automation, robotics, and space. Two days of live coverage. We're talking to all the hot technologists. We got all the action startups and segment on sustainability and F pan hero for vet global lead, Amazon sustainability data initiative. Thanks for coming on the cube. Can I get that right? Can >>You, you, you did. >>Absolutely. Okay, great. <laugh> thank >>You. >>Great to see you. We met at the analyst, um, mixer and, um, blown away by the story going on at Amazon around sustainability data initiative, because we were joking. Everything's a data problem now, cuz that's cliche. But in this case you're using data in your program and it's really kind of got a bigger picture. Take a minute to explain what your project is, scope of it on the sustainability. >>Yeah, absolutely. And thank you for the opportunity to be here. Yeah. Um, okay. So, um, I, I lead this program that we launched several years back in 2018 more specifically, and it's a tech for good program. And when I say the tech for good, what that means is that we're trying to bring our technology and our infrastructure and lend that to the world specifically to solve the problems related to sustainability. And as you said, sustainability, uh, inherently needs data. You need, we need data to understand the baseline of where we are and also to understand the progress that we are making towards our goals. Right? But one of the big challenges that the data that we need is spread everywhere. Some of it is too large for most people to be able to, um, access and analyze. And so, uh, what we're trying to tackle is really the data problem in the sustainability space. >>Um, what we do more specifically is focus on Democrat democratizing access to data. So we work with a broader community and we try to understand what are those foundational data sets that most people need to use in the space to solve problems like climate change or food security or think about sustainable development goals, right? Yeah. Yeah. Like all the broad space. Um, and, and we basically then work with the data providers, bring the data to the cloud, make it free and open to everybody in the world. Um, I don't know how deep you want me to go into it. There's many other layers into that. So >>The perspective is zooming out. You're, you're, you're looking at creating a system where the democratizing data means making it freely available so that practitioners or citizens, data, Wrangler, people interested in helping the world could get access to it and then maybe collaborate with people around the world. Is that right? >>Absolutely. So one of the advantages of using the cloud for this kind of, uh, effort is that, you know, cloud is virtually accessible from anywhere where you have, you know, internet or bandwidth, right? So, uh, when, when you put data in the cloud in a centralized place next to compute, it really, uh, removes the, the need for everybody to have their own copy. Right. And to bring it into that, the traditional way is that you bring the data next to your compute. And so we have this multiple copies of data. Some of them are on the petabyte scale. There's obviously the, the carbon footprint associated with the storage, but there's also the complexity that not everybody's able to actually analyze and have that kind of storage. So by putting it in the cloud, now anyone in the world independent of where of their computer capabilities can have access to the same type of data to solve >>The problems. You don't remember doing a report on this in 2018 or 2017. I forget what year it was, but it was around public sector where it was a movement with universities and academia, where they were doing some really deep compute where Amazon had big customers. And there was a movement towards a open commons of data, almost like a national data set like a national park kind of vibe that seems to be getting momentum. In fact, this kind of sounds like what you're doing some similar where it's open to everybody. It's kinda like open source meets data. >>Uh, exactly. And, and the truth is that these data, the majority of it's and we primarily work with what we call authoritative data providers. So think of like NASA Noah, you came me office organizations whose mission is to create the data. So they, their mandate is actually to make the data public. Right. But in practice, that's not really the case. Right. A lot of the data is stored like in servers or tapes or not accessible. Um, so yes, you bring the data to the cloud. And in this model that we use, Amazon never actually touches the data and that's very intentional so that we preserve the integrity of the data. The data provider owns the data in the cloud. We cover all the costs, but they commit to making it public in free to anybody. Um, and obviously the computer is next to it. So that's, uh, evaluated. >>Okay. Anna. So give me some examples of, um, some successes. You've had some of the challenges and opportunities you've overcome, take me through some of the activities because, um, this is really needed, right? And we gotta, sustainability is top line conversation, even here at the conference, re Mars, they're talking about saving climate change with space mm-hmm <affirmative>, which is legitimate. And they're talking about all these new things. So it's only gonna get bigger. Yeah. This data, what are some of the things you're working on right now that you can share? >>Yeah. So what, for me, honestly, the most exciting part of all of this is, is when I see the impact that's creating on customers and the community in general, uh, and those are the stories that really bring it home, the value of opening access to data. And, and I would just say, um, the program actually offers in addition to the data, um, access to free compute, which is very important as well. Right? You put the data in the cloud. It's great. But then if you wanna analyze that, there's the cost and we want to offset that. So we have a, basically an open call for proposals. Anybody can apply and we subsidize that. But so what we see by putting the data in the cloud, making it free and putting the compute accessible is that like we see a lot, for instance, startups, startups jump on it very easily because they're very nimble. They, we basically remove all the cost of investing in the acquisition and storage of the data. The data is connected directly to the source and they don't have to do anything. So they easily build their applications on top of it and workloads and turn it on and off if you know, >>So they don't have to pay for it. >>They have to pay, they basically just pay for the computes whenever they need it. Right. So all the data is covered. So that makes it very visible for, for a lot of startups. And then we see anything like from academia and nonprofits and governments working extensively on the data, what >>Are some of the coolest things you've seen come out of the woodwork in terms of, you know, things that built on top of the, the data, the builders out there are creative, all that heavy, lifting's gone, they're being creative. I'm sure there's been some surprises, um, or obvious verticals that jump healthcare jumps out at me. I'm not sure if FinTech has a lot of data in there, but it's healthcare. I can see, uh, a big air vertical, obviously, you know, um, oil and gas, probably concern. Um, >>So we see it all over the space, honestly. But for instance, one of the things that is very, uh, common for people to use this, uh, Noah data like weather data, because no, basically weather impacts almost anything we do, right? So you have this forecast of data coming into the cloud directly streamed from Noah. And, um, a lot of applications are built on top of that. Like, um, forecasting radiation, for instance, for the solar industry or helping with navigation. But I would say some of the stories I love to mention because are very impactful are when we take data to remote places that traditionally did not have access to any data. Yeah. And for instance, we collaborate with a, with a program, a nonprofit called digital earth Africa where they, this is a basically philanthropically supported program to bring earth observations to the African continents in making it available to communities and governments and things like illegal mining fighting, illegal mining are the forestation, you know, for mangroves to deep forest. Um, it's really amazing what they are doing. And, uh, they are managing >>The low cost nature of it makes it a great use case there >>Yes. Cloud. So it makes it feasible for them to actually do this work. >>Yeah. You mentioned the Noah data making me think of the sale drone. Mm-hmm <affirmative> my favorite, um, use case. Yes. Those sales drones go around many them twice on the queue at reinvent over the years. Yeah. Um, really good innovation. That vibe is here too at the show at Remar this week at the robotics showcases you have startups and growing companies in the ML AI areas. And you have that convergence of not obvious to many, but here, this culture is like, Hey, we have, it's all coming together. Mm-hmm <affirmative>, you know, physical, industrial space is a function of the new O T landscape. Mm-hmm <affirmative>. I mean, there's no edge in space as they say, right. So the it's unlimited edge. So this kind of points to the major trend. It's not stopping this innovation, but sustainability has limits on earth. We have issues. >>We do have issues. And, uh, and I, I think that's one of my hopes is that when we come to the table with the resources and the skills we have and others do as well, we try to remove some of these big barriers, um, that make it things harder for us to move forward as fast as we need to. Right. We don't have time to spend that. Uh, you know, I've been accounted that 80% of the effort to generate new knowledge is spent on finding the data you need and cleaning it. Uh, we, we don't have time for that. Right. So can we remove that UN differentiated, heavy lifting and allow people to start at a different place and generate knowledge and insights faster. >>So that's key, that's the key point having them innovate on top of it, right. What are some things that you wanna see happen over the next year or two, as you look out, um, hopes, dreams, KPIs, performance metrics, what are you, what are you driving to? What's your north star? What are some of those milestones? >>Yeah, so some, we are investing heavily in some areas. Uh, we support, um, you know, we support broadly sustainability, which as, you know, it's like, it's all over, <laugh> the space, but, uh, there's an area that is, uh, becoming more and more critical, which is climate risk. Um, climate risk, you know, for obvious reasons we are experienced, but also there's more regulatory pressures on, uh, business and companies in general to disclose their risks, not only the physical, but also to transition risks. And that's a very, uh, data heavy and compute heavy space. Right. And so we are very focusing in trying to bring the right data and the right services to support that kind of, of activity. >>What kind of break was you looking for? >>Um, so I think, again, it goes back to this concept that there's all that effort that needs to be done equally by so many people that we are all repeating the effort. So I'll put a plug here actually for a project we are supporting, which is called OS climates. Um, I don't know if you're familiar with it, but it's the Linux foundation effort to create an open source platform for climate risk. And so they, they bought the SMP global Airbus, you know, Alliance all these big companies together. And we are one of the funding partners to basically do that basic line work. What are the data that is needed? What are the basic tools let's put it there and do the pre-competitive work. So then you can do the build the, the, the competitive part on top of it. So >>It's kinda like a data clean room. >>It kind of is right. But we need to do those things, right. So >>Are they worried about comp competitive data or is it more anonymized out? How do you, >>It has both actually. So we are primarily contributing, contributing with the open data part, but there's a lot of proprietary data that needs to be behind the whole, the walls. So, yeah, >>You're on the cutting edge of data engineering because, you know, web and ad tech technologies used to be where all that data sharing was done. Mm-hmm <affirmative> for the commercial reasons, you know, the best minds in our industry quoted by a cube alumni are working on how to place ads better. Yeah. Jeff Acker, founder of Cloudera said that on the cube. Okay. And he was like embarrassed, but the best minds are working on how to make ads get more efficient. Right. But that tech is coming to problem solving and you're dealing with data exchange data analysis from different sources, third parties. This is a hard problem. >>Well, it is a hard problem. And I'll, I'll my perspective is that the hardest problem with sustainability is that it goes across all kinds of domains. Right. We traditionally been very comfortable working in our little, you know, swimming lanes yeah. Where we don't need to deal with interoperability and, uh, extracting knowledge. But sustainability, you, you know, you touch the economic side, it touches this social or the environmental, it's all connected. Right. And you cannot just work in the little space and then go sets the impact in the other one. So it's going to force us to work in a different way. Right. It's, uh, big data complex data yeah. From different domains. And we need to somehow make sense of all of it. And there's the potential of AI and ML and things like that that can really help us right. To go beyond the, the modeling approaches we've been done so >>Far. And trust is a huge factor in all this trust. >>Absolutely. And, and just going back to what I said before, that's one of the main reasons why, when we bring data to the cloud, we don't touch it. We wanna make sure that anybody can trust that the data is nowhere data or NASA data, but not Amazon data. >>Yes. Like we always say in the cube, you should own your data plane. Don't give it up. <laugh> well, that's cool. Great. Great. To hear the update. Is there any other projects that you're working on you think might be cool for people that are watching that you wanna plug or point out because this is an area people are, are leaning into yeah. And learning more young, younger talents coming in. Um, I, whether it's university students to people on side hustles want to play with data, >>So we have plenty of data. So we have, uh, we have over a hundred data sets, uh, petabytes and petabytes of data all free. You don't even need an AWS account to access the data and take it out if you want to. Uh, but I, I would say a few things that are exciting that are happening at Mars. One is that we are actually got integrated into ADX. So the AWS that exchange and what that means is that now you can find the open data, free data from a STI in the same searching capability and service as the paid data, right. License data. So hopefully we'll make it easier if I, if you wanna play with data, we have actually something great. We just announced a hackathon this week, uh, in partnership with UNESCO, uh, focus on sustainable development goals, uh, a hundred K in prices and, uh, so much data <laugh> you >>Too years, they get the world is your oyster to go check that out at URL at website, I'll see it's on Amazon. It use our website or a project that can join, or how do people get in touch with you? >>Yeah. So, uh, Amazon SDI, like for Amazon sustainability, that initiative, so Amazon sdi.com and you'll find, um, all the data, a lot of examples of customer stories that are using the data for impactful solutions, um, and much more >>So, and these are, there's a, there's a, a new kind of hustle going out there, seeing entrepreneurs do this. And very successfully, they pick a narrow domain and they, they own it. Something really obscure that could be off the big player's reservation. Mm-hmm <affirmative> and they just become fluent in the data. And it's a big white space for them, right. This market opportunities. And at the minimum you're playing with data. So this is becoming kind of like a long tail domain expertise, data opportunity. Yeah, absolutely. This really hot. So yes. Yeah. Go play around with the data, check it outs for good cause too. And it's free. >>It's all free. >>Almost free. It's not always free. Is it >>Always free? Well, if you, a friend of mine said is only free if your time is worth nothing. <laugh>. Yeah, >>Exactly. Well, Anna, great to have you on the cube. Thanks for sharing the stories. Sustainability is super important. Thanks for coming on. Thank you for the opportunity. Okay. Cube coverage here in Las Vegas. I'm Sean. Furier, we've be back with more day one. After this short break.
SUMMARY :
Thanks for coming on the cube. <laugh> thank We met at the analyst, um, mixer and, um, blown away by the story going But one of the big challenges that the data that we need is spread everywhere. So we work with a broader community and we try to understand what are those foundational data that practitioners or citizens, data, Wrangler, people interested in helping the world could And to bring it into that, the traditional way is that you bring the data next to your compute. In fact, this kind of sounds like what you're doing some similar where it's open to everybody. And, and the truth is that these data, the majority of it's and we primarily work with even here at the conference, re Mars, they're talking about saving climate change with space making it free and putting the compute accessible is that like we see a lot, So all the data is covered. I can see, uh, a big air vertical, obviously, you know, um, oil the African continents in making it available to communities and governments and So it makes it feasible for them to actually do this work. So the it's unlimited edge. I've been accounted that 80% of the effort to generate new knowledge is spent on finding the data you So that's key, that's the key point having them innovate on top of it, right. not only the physical, but also to transition risks. that needs to be done equally by so many people that we are all repeating the effort. But we need to do those things, right. So we are primarily contributing, contributing with the open data part, Mm-hmm <affirmative> for the commercial reasons, you know, And I'll, I'll my perspective is that the hardest problem that the data is nowhere data or NASA data, but not Amazon data. people that are watching that you wanna plug or point out because this is an area people are, So the AWS that It use our website or a project that can join, or how do people get in touch with you? um, all the data, a lot of examples of customer stories that are using the data for impactful solutions, And at the minimum you're playing with data. It's not always free. Well, if you, a friend of mine said is only free if your time is worth nothing. Thanks for sharing the stories.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Jeff Acker | PERSON | 0.99+ |
Anna | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
2017 | DATE | 0.99+ |
2018 | DATE | 0.99+ |
80% | QUANTITY | 0.99+ |
Cloudera | ORGANIZATION | 0.99+ |
UNESCO | ORGANIZATION | 0.99+ |
Two days | QUANTITY | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
Sean | PERSON | 0.99+ |
NASA | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Ana Pinheiro Privette | PERSON | 0.99+ |
Airbus | ORGANIZATION | 0.98+ |
both | QUANTITY | 0.98+ |
one | QUANTITY | 0.97+ |
twice | QUANTITY | 0.96+ |
FinTech | ORGANIZATION | 0.96+ |
Democrat | ORGANIZATION | 0.95+ |
this week | DATE | 0.95+ |
SMP | ORGANIZATION | 0.95+ |
One | QUANTITY | 0.93+ |
over a hundred data sets | QUANTITY | 0.93+ |
Linux | TITLE | 0.92+ |
Mars | LOCATION | 0.92+ |
next year | DATE | 0.91+ |
Noah | ORGANIZATION | 0.91+ |
Wrangler | PERSON | 0.91+ |
Noah | PERSON | 0.85+ |
a hundred K | QUANTITY | 0.82+ |
Alliance | ORGANIZATION | 0.82+ |
earth | LOCATION | 0.78+ |
ADX | TITLE | 0.78+ |
petabytes | QUANTITY | 0.68+ |
MARS 2022 | DATE | 0.66+ |
Mars hot | EVENT | 0.64+ |
several years | DATE | 0.55+ |
Africa | LOCATION | 0.54+ |
Remar | LOCATION | 0.54+ |
African | OTHER | 0.52+ |
two | QUANTITY | 0.5+ |
day | QUANTITY | 0.44+ |
sdi.com | TITLE | 0.41+ |