Image Title

Search Results for narwhal:

Saket Saurabh, Next | AWS Startup Showcase S2 E2


 

[Music] welcome everyone to thecube's presentation of the aws startup showcase data as code this is season two episode two of our ongoing series covering exciting startups in the aws ecosystem to talk about data and analytics i'm your host lisa martin i have a cube alumni here with me socket sarah the ceo and founder of nexla he's here to talk about a future of automated data engineering socket welcome back great to see you lisa thank you for having me pleasure to be here again let's dig into nexla's mission ready to use data in the hands of every user what does that mean that means that you know every organization what what are they trying to do with data they want to make use of data they want to make decisions from data they want to make data a part of their business right the challenge is that every function in an organization today needs to leverage data whether it is finance whether it is hr whether it is marketing sales or product the problem for companies is that for each of these users into each of these teams the data is not ready for them to use as it is there is a lot that goes on before the data can be in their hands and it's in the tools that they like to work with and that's where a lot of data engineering happens today i would say that is by far one of the biggest bottlenecks today for companies in accelerating their business and being you know truly data-driven so talk to me about what makes nexla unique when you're in customer conversations as every company these days in every industry has to be a data company what do you tell them about what differentiates you yeah one of the biggest challenges out there is that the variety of data that companies work with is growing tremendously you know every sas application you use becomes a data source every type of database every type of user event anything can be a source of data now it is a tremendous engineering challenge for companies to make the data usable and the biggest challenge there is people companies just cannot have enough people to write that code to make the data engineering happen and where we come in with a very unique value is how to start thinking about making this whole process much faster much more automated at the end of the day lisa time to value and time to results is by far the number one thing on top of mind for customers time to value is critical we're all thin on patients these days whether we're in our consumerizer our business lives but being able to get access to data to make intelligent decisions whether it's on something that you're going to buy or a product or service you're going to deliver is really critical give me a snapshot of some of the users of nexla yeah the users of nexla are actually across different industries one of the main one of the interesting things is that the data challenges whether you are in financial services whether you are in retail e-commerce whether you are in healthcare they are very similar is basically getting connected to all these data systems and having the data now what people do with the data is very specific to their industry so for example within the e-commerce world or retail world itself you know companies from the likes of bed bath beyond and forever 21 and poshmark which are retailers or e-commerce companies they use nexla today to bring a lot of data in uh so do delivery companies like dodash and instacart and you know so do for example logistics providers like you know narwhal or customer loyalty and customer data companies like yacht pro so across the board for example just in retail we cover a whole bunch of companies got it now let's dig into you're here to talk about the future of automated data engineering talk to me about data engineering what is it let's define it and crack it open yeah um data engineering is i would say by far one of the hottest areas of work today the one of the hardest people to hire if you're looking for one data engineering is basically um all the code you know the process and the people that is basically connecting to their system so just to give a very practical example right for um for somebody in e-commerce let's say a take-off case of door dash right it's extremely important for them to have data as to which stores have what products what is available is this something they can list for people to go and buy is this something that they can therefore deliver right this is data that changes all the time now imagine them getting data from hundreds of different merchants across the board so it is the task of data engineering to then consume that data from all these different places different formats different apis different systems and then somehow unify all the data so that it can be used by the applications that they are building so data engineering in this case becomes taking data from different places and making it useful again back to what i was talking about ready to use data it is a lot of code it's a lot of people not just that it is something that runs every single day so it means it has monitoring it has reliability um it has performance it has every aspect of engineering as we know going into it you mentioned it's a hot topic which it is but it's also really challenging to accomplish how does nexla help enable that yeah data engineering is quite interesting in that one it is difficult to implement you know the the necessary sort of pieces but it is also very repetitive at some level right i mean when you connect to say 10 systems and get data from them you know that's not the end of it you have 10 more and 10 more and 10 more and then at some point you have thousands of such you know data connectivity and data flows happening it's hard to maintain them right as well so the way nexla gets into the whole picture is looking at what can we understand about data what can we observe about the data systems what can be done from that and then start to automate certain pieces of data engineering so that we are helping those teams just accelerate a lot faster and it i would say comes down to more people being able to do these tasks rather than only very very specialized people more people being able to do the tasks more users kind of democratization of data really there can you talk to us in more detail about how naxa is automating data engineering yeah i think um you know i think this is best shared through a visual so let me walk you through that a little bit as to how we automated engineering right so if we think about data engineering three of the most core components are many parts to it but three of the most core components of that are integrating with data systems preparing and transforming data and then monitoring that right so automating data engineering happens in you know three different ways first of all connecting connecting to data is is basically about the gateway to data the ability to read and write data from different systems this is where the data journey starts but it is extremely complex because people have to write code to connect to different systems one part that we have automated is generating these connectors so that you don't have to write code for that also making them bi-directional is extremely valuable because now you can read and write from any system the second part is that the gateway the connector has read the data but how do you represent it to the user so anybody can understand it and that's where the concept of data product comes in so we also look at auto generating data products these become the common language and entity that people can understand and work with and then the third part is taking all this automation and bringing the human in the loop no automation is perfect and therefore bringing the human in the loop means that somebody who is an expert in data who can look at it and understand it can now do things which only data systems experts were able to do before so bringing in that user of data directly into the into the picture is one important part but let's not forget data challenges are very diverse and very complex so the same system also becomes accessible to the engineers who are experts in that and now both of these can work together while an engineer will come through apis and sdk and command interfaces a data user comes in through a nice no code user interface and all of these things coming together are what is accelerating back to that time to value that really everybody cares about so if i'm in marketing and i'm a data user i'm able to have a collaborative workflow with the data engineer yeah yeah for the first time that is actually possible and everybody's focuses on their expertise and their know-how so you know um somebody who for example in financial services really understands portfolio and transactions and different type of asset classes they have the data in front of them the engineers who understand the underlying real-time data feeds and those they are still involved in the loop but now they are not doing that back and forth you know as the user of data i'm not going to the engineer saying hey can you do this for me can you get the data here and that back and forth is not only time taking it's frustrating and the number one hold back right yeah that and that's time that nobody has to waste as we know for many reasons talk to me about when you look into your crystal ball which i'm sure you have one what is the future of of data engineering from nexus perspective you talked about the automation what's the future hold i think the future of data engineering becomes that we up level this at a point where um companies don't have to be slowed down for it um i think a lot of tooling is already happening the way to think about this is that here in 2022 if we think that our data challenges are you know like x they will be a thousand x in five years right i mean this complexity is just increasing very rapidly so we think that this becomes one of those fundamental layers you know and you know as i was saying maybe the last time this is like the road you know you don't feel it you just move on it you do your job you build your products deliver your services as a company this just works for you um and that's where i think the future is and that's where i think the future should be we all need to work towards that we're not there yet not there yet a lot of a lot of potential a lot of opportunity and a lot of momentum speaking of momentum i want to talk about data mesh that is a topic of a lot of excitement a lot of discussion let's unpack that yeah i think uh you know the idea that data should be democratized that people should get access to the data and it's all coming back to that sort of basic concept of scale companies can scale only when more people can do the relevant jobs without depending on each other right so the idea of data democratization has been there for a long time but you know recently in the last couple of years the concept of data mesh was introduced by zamak digani and thoughtworks and that has really caught the attention of people and the imagination of leadership as well the idea that data should be available as a product you know that democratization can happen what is the entity of the democratization that's data presented as a product that people can use and collaborate is extremely powerful um i think a lot of companies are gravitating towards that and that's why it's exciting this is promising a future that is you know possible so second speaking of data products we talked a little bit about this last time but can you really help us understand see smell touch feel what a data product is and give us that context yeah absolutely i think uh best to orient ourselves with the general thinking of how we consider something as a product right a product is something that we find ready to use for example this table that i'm using right now made out of raw materials wood metal screws somebody designed it somebody produced it and i'm using it right now when we think about data products we think about data as the raw material so for example a spreadsheet an api a database query those are the raw raw materials what is a data product is something that further enriches and enhances that entity to be much more usable ready to use right um let me illustrate that with a little bit of a visual actually and that might help okay um the idea of the data product and this is how a data product looks like in next lab for a user to write as you see the concept of a data product is something that first of all it's a logical entity this simply means that it's not a new copy of data just like containers or logical compute units you know these data products are logical entities but they represent data in the same consistent fashion regardless of where the data comes from what format it is in they provide the user the idea of what the structure of data is what the sample data looks like what the characteristics of data are it allows people to have some documentation around it what does the data mean what do these attributes you know mean and how to interpret them how to validate that data something that users often know in an industry how is my data looking like well this value can never be negative because it's a price for example right um then the ability to take these data products that you know we automate by generating as i was mentioning earlier automatically creating these data products taking these data products to create new data products now that's something that's very unique about data you could take data off about an order for a from a company and say well the order data has an order id and a user id but i need to look up shipping address so i can combine user and order data to get that information in one place so you know creating new data products giving people access hey i've designed a data product i think you'll find it useful you can go use that as it is you don't have to go from scratch so all of those things together make a data product something that people can find ready to use again and this is this is also usable by the again that example where i'm in marketing uh or i'm in sales this is available to me as a general user as a general user in the tool of your choice so you can say oh no i am most familiar with using data in a spreadsheet i would like it there or i prefer my data in a tableau or a looker to visualize it and you can have it there so these data products give multiple interfaces for the end user to make use of it got it i like it you're meeting the user where they are with relevant data that helps them understand so much more contextually i'm curious when you're in customer conversations customers that come to you saying saka we need to build the data mesh how is nexl relevant they're how what is your conversation like yeah when people want to build a data mesh they're really looking for how their organization will scale into the future uh there are multiple components to building a data mesh there's a tooling part of it the technology portion there are people and processes right i mean unless you train people in certain processes and say hey when you build a data product you know make sure you have taken care of privacy or compliance to certain rules or who do you give access to is something you have to follow some rules about so we provide the technology component of it and then the people and process is something that companies you know then as they adopt and do that right so the concept of data product becomes core to building the data mesh having governance on it uh having all this be self-serve it's an essential part of that so that's where we come into the picture as a as a technology component to the whole story and working to deliver on that mission to getting data in the hands of every user you mentioned i want to dig into in the last few minutes here that we have uh the target audience you mentioned a few by name big names customers that nexla has you i heard retail i heard e-commerce i think i heard logistics but talk to me about the target customer for nexla any verticals in particular or any company's sizes in particular as well yeah you know the one of the top three banks in the country is a big user of nexla as part of their data stack uh we actually sit as part of their enterprise-wide ai platform providing data to their data scientists um we're not allowed to share their name unfortunately but um you know there are multiple other companies in asset management area for example they work with a lot of data in markets portfolio and so on um the leading medical devices companies using nexla data scientists there are using data coming in real time or streaming for medical devices to train and um and combine that with other data to do sort of clinical trial related research that they do um we have you know the companies for example linkedin is an excellent customer linkedin is by far the largest social network um their marketing team leverages nexla to bring data from different type of systems together as well um you know so are companies in education space like nerdy is a public company that uses nexla for you know student enrollment education data as they collaborate with school districts for example um you know there are companies across the board in marketing live brand you know for example uses nexla so we are um we are you know from who uses nexla is today mostly mid to large to very large enterprises today leverage nexla as a very critical component and often mission critical data for which they leverage us do you see that changing anytime soon as every company these days has to be a data company we expect that as consumers whether it's my grocery store um or my local coffee shop that they've got to use data to deliver me that personalized experience do you see the target audience kind of shifting down to more into mid-market smb space for next level oh yeah absolutely look we started the journey of the company with the thinking that the most complex data challenges exist in the large enterprise and if we can make it no code self-serve easy to use for them we can bring the same high-end technology to everybody and this is exactly why we recently launched in the amazon marketplace so anybody can go there get access to nexla and start to use it and you will see more and more of that happen where we will be bringing even some free versions of our product available so you're absolutely right every company needs to leverage data and i think people are getting much better at it you know especially in the last couple of years i've seen that teams have become much more sophisticated yes even if you are a coffee shop and you're running campaigns you know getting people yelp reviews and so on this data that you can use and understand better your demographic your customer and run your business better so one day yes we will absolutely be in the hands of every single person here a lot more opportunity to delight a lot more consumers and customers socket thank you so much for joining me on the program during the startup showcase you did a great job of helping us understand the future of automated data engineering we appreciate your insights thank you so much lisa it's a pleasure talking to you likewise for soccer sarah i'm lisa martin you're watching thecube's coverage of the aws startup showcase season two episode two stick around more great content coming up from the cube the leader in hybrid tech event coverage [Music]

Published Date : Mar 30 2022

**Summary and Sentiment Analysis are not been shown because of improper transcript**

ENTITIES

EntityCategoryConfidence
10 systemsQUANTITY

0.99+

10QUANTITY

0.99+

Saket SaurabhPERSON

0.99+

lisa martinPERSON

0.99+

2022DATE

0.99+

lisaPERSON

0.99+

sarahPERSON

0.99+

second partQUANTITY

0.99+

thousandsQUANTITY

0.99+

third partQUANTITY

0.99+

one partQUANTITY

0.99+

nexlaORGANIZATION

0.99+

naxaORGANIZATION

0.99+

threeQUANTITY

0.98+

eachQUANTITY

0.98+

dodashORGANIZATION

0.98+

hundreds of difQUANTITY

0.98+

todayDATE

0.98+

first timeQUANTITY

0.98+

five yearsQUANTITY

0.98+

narwhalORGANIZATION

0.97+

bothQUANTITY

0.97+

AWSORGANIZATION

0.96+

instacartORGANIZATION

0.96+

yacht proORGANIZATION

0.95+

linkedinORGANIZATION

0.94+

oneQUANTITY

0.94+

firstQUANTITY

0.94+

awsORGANIZATION

0.94+

one important partQUANTITY

0.92+

nexlaTITLE

0.91+

one placeQUANTITY

0.91+

every single dayQUANTITY

0.91+

zamak diganiPERSON

0.9+

three different waysQUANTITY

0.89+

amazonORGANIZATION

0.89+

last couple of yearsDATE

0.88+

last couple of yearsDATE

0.88+

secondQUANTITY

0.87+

poshmarkORGANIZATION

0.87+

sarah the ceoPERSON

0.85+

nexusORGANIZATION

0.83+

season twoQUANTITY

0.8+

a lot of peopleQUANTITY

0.8+

ShowcaseEVENT

0.79+

every functionQUANTITY

0.79+

one dayQUANTITY

0.78+

three banksQUANTITY

0.77+

10 moreQUANTITY

0.77+

number oneQUANTITY

0.76+

ferentORGANIZATION

0.73+

lot of dataQUANTITY

0.73+

thousandQUANTITY

0.73+

core componentsQUANTITY

0.7+

single personQUANTITY

0.69+

S2 E2EVENT

0.67+

one of the biggest bottlenecksQUANTITY

0.67+

lot of companiesQUANTITY

0.6+

episode twoQUANTITY

0.59+

thecubeORGANIZATION

0.56+

challengesQUANTITY

0.53+