Image Title

Search Results for Weather FX:

Sheri Bachstein & Mary Glackin | IBM Think 2018


 

>> Narrator: From Las Vegas, it's the Cube, covering IBM Think 2018, brought to you by IBM. >> Welcome back to Las Vegas, everybody. You're watching the Cube, the leader in live tech coverage. My name is Dave Vellante, and this is day three of our wall-to-wall coverage of IBM's inaugural Think conference. Mary Glackin's here, she's the vice president of weather business solutions, public, private partnerships, IBM Watson, and she's joined by Sheri Bachstein as the global head of consumer business at the Weather Company, an IBM company. Ladies, welcome to the Cube, thanks so much for coming on. >> Thank you, you're welcome. >> Thanks. >> Alright, Mary, going to start with the Weather Company. When IBM acquired the Weather Company, a lot of people were like, "What?", and they said, "Okay, data science, I get that.", and then, there was an IoT spin on that. Obviously, you have a lot of data, but, I got to ask you, what business are you in? >> So, what we like to say is we're in, not in the weather business, we're in the decision business. We're really dedicated, everyday, to help businesses, make the best decisions possible, and Sheri works on the consumer end of the business to do exactly the same thing. >> So, talk about your respective roles. Sheri, you're on the consumer side, as Mary just said, what does that entail? >> So, the consumer side is any touchpoint where we're bringing weather and weather insights to our consumers, whether it's on our weather channel app, whether it's on our web platform, mobile web, on wearables, so, it's anywhere where we're connecting with consumers, and, as Mary said, it's really about helping consumers make decisions. In our field, the forecast and some of the weather data has become a commodity almost, and we've actually shared our weather data with a lot of partners, and, so, now, we're using machine learning and data science to really come up with weather insights to help consumers make decisions, and it could be something just as simple as what to wear today, what's going to happen for a big event, or it can be around how do I keep people safe during severe weather. >> Yeah, I mean, we all look at the weather. I mean, I look at it everyday. >> Yeah. >> Of course, when you travel, like, what do I bring, what do I wear? Living in the East Coast these days, a lot of storms that we've >> That's right. >> encountered in the East Coast. I wonder if you could talk about life at IBM. I mean, again, it was a curious acquisition to a lot of people. Have you guys assimilated, how has it changed your business? >> I would say pretty dramatically. So, coming back to IBM acquiring us, they acquired us, really, for two reasons. One is we had some underlying technology that was really of interest to them that they're leveraging today, but the other part was because weather impacts so many businesses. So, as we've come into IBM, we've had alliances with IBM research. We're working on a pretty exciting project in bringing the next generation weather model to market, using high performance computing there. We've had alliances, definitely, through Watson in bringing AI into our products, and then, our product lines marry up with a lot of IBM product lines. So, we've rolled out a really exciting offering in closed captioning, and it really works well with some of the classical media business, weather media business that we have been providing. >> So, how do you guys make money? Maybe we could talk about the consumer side and the business side. A lot of people must ask that question. >> Yeah. >> They're advertising, okay, fine, >> Yeah. >> but that's not the core of what you guys do. >> Yeah, so, on the consumer side, a big majority of our revenue is drive by advertising, but we had to look at that business as well, 'cause as programmatic advertising has kind of taken up the landscape, how did we pivot to really generate more revenue, and, so, we've done that by creating Watson advertising, and that was one of the first implementations of Watson after the acquisition on the consumer side, and what we've done is we've created an open, scalable environment that, now, we can not only sell meaningful insights on our platform, but we can now give that to our partners, that they can go off our property and use the weather insights, we can use different data around location and media to help our partners really have a better experience, not only on our platform, but on any publisher's platform. >> So, that's your customers using Watson for advertising to drive their business. >> That's right. >> It's not like IBM is getting into the advertising business, per se, directly, is that right? >> Right, well, we're leveraging the power of Watson to create these insights. One of the products we created is called Weather FX, and, really, what it's doing, it's taking predictive analytics on the retail side, which is really an underused technology for retailers, but taking our historical weather data, mixing it with their retail data' to come up with insights so we can come up with interesting things that, say, in the northeast, like right now, during the winter, soda sells tremendously during very snowy or rainy winters. We can look at, you know, strawberry Pop-Tarts sell fairly well right before a hurricane, and, so, these are insights that we can bring to retailers, but it helps them with their supply chain, it helps them with their inventory, it can actually even help them with pricing, and, so, this is one of the ways we're taking our weather technology and marrying it with the advertising world to help provide those insights. >> For real, with the strawberry Pop-Tarts? >> For real, yeah, I guess, you know, you don't have to cook 'em or something. I don't know, so, yeah. >> Right, yeah, it's simple if the lights go out, okay. I mean, we want to ask you about your title, public and private partnerships. It's interesting, what is that all about? >> So, it's really about the fact that weather has really been something that's been shared globally around the world for hundreds of years at this point, and, so, the Weather Company and IBM take it very seriously that we be good partners in that community of weather providers. So, one of the things that we feel passionately about is we have a shared safety mission with national meteorological services globally. So, here in the US, we transmit, Sheri's team does, the warnings that come from the National Weather Service unaltered with attribution to the National Weather Service. We feel that it's really important that there's a sole authoritative voice when there's really danger. So, we share that safety mission, and then, we're trying to help in other parts of the world. We've had some partnerships to try to increase the observing in Africa which is really a part of the world that's under-observed. So, some of IBM's philanthropic efforts have been helping to fill in there and work with those national met services. So, it's really one of the really fun parts of my job. >> You know, we talk a lot about digital transformation, and Ginni Rometty was talking about the incumbent disruptors, and we've been riffing on that all week. We've made the observation that companies that are digital have data at their core, and they've organized, sort of, human expertise around that data. Most companies, Fortune 1000, are built around human expertise and built around other assets, the bottling plant or the factory, et cetera. I look at the Weather Company as a data company, that's probably fair. Did you evolve into that data is clearly at your core? Has it always been, and it's very interesting that IBM has acquired this company as it changes its DNA. I wonder if you could address that. >> Go ahead (laughs). >> So, I think there's a couple aspects around our data. There's obviously the weather data which is really powerful, but then, there's also location data. We're one of the largest location data providers besides Google and some of the others, because our weather accuracy starts with location which is really important. We have 250 million users that use our application, and we want to give them the most accurate forecast, and that starts with location. Because we add value, users will opt in to give us that data which is really important to us that we do keep their data private and opt in to that to get that location data. So, that's really powerful, because, now we can deliver products based on time and location and weather, and it just makes for better weather insights for, not only our consumers, but for our businesses. >> Yeah, yeah. >> Do you use, I mean, how do you use social? I mean, you know how Waze tells you where the traffic is and you report back. Do you guys rely heavily on that, or do you more rely on machines to help you with your forecast? Is it a combination? >> So, I could talk a little bit. One of our new market areas we've been going into is ground transportation. So, we do have a partner that's providing us some transportation, traffic information, but what we bring to it is being able to do, the predictive thing, is to take the weather piece and how that's going to influence that traffic. So, as the storm comes through, we know by looking at past events what that will mean and we bring that piece to the table. So, it's an example of how we go, not just giving you a weather forecast, but really forecasting the impacts and giving you insights, so that if you're running a large trucking operation, you can reroute fleets around it and avoid weather like that and keep people safe. >> Talk about, oh, go ahead, please. >> One of the brands within our portfolio is Weather Underground, and what they brought to the table for us is a personal weather station that works. So, we have about 270,000 around the world, and these are people that just really love the weather. They have a personal weather station in their backyard and they provide that data that then goes into Mary's team in helping looking at the forecast. So, that's one of the ways that we're using kind of a social network in sensoring to influence some of the work that we're doing. >> I mean, the weather forecast, for years, have been the butt of many jokes. You guys are data science oriented, data scientists, the data doesn't lie. We just keep iterating >> Yeah. >> and make it better and better and better. What could you tell us about the improvements of the forecast over the last decade? Maybe Bill Belichick makes jokes about the weather and you hear it, you say, "You know, actually "the weather's predictions have gotten much better." You guys measure it, what can you share with us? >> Oh, it's gotten so much better over the course of my career, it's pretty dramatic and it's getting better still. You're going to see some real breakthroughs coming up. So, one of the things that we've really put a lot of bets on in IBM is the internet of things, >> Dave: Right. >> and, so, we are, today, pulling off of cellphones atmospheric pressure data and that's going into our next generation model. So, this'll be more data than anybody has powering that model. So, you're able to augment traditional data sources like, you may or may not know, we still launch weather balloons twice a day to measure through the atmosphere, but, in our technology, we take data off of airplanes, we take data off of cellphones, we'll soon be taking data off of cars which will tell us when the windshield wipers are moving, is it raining or not, when the anti-lock brakes things lock, that roads are icy, all of that. So, all of that will come in to improve forecasting. >> So, this requires partnerships with all that and amazing supply chain. >> Absolutely. >> I presume IBM helps there as well, but did you have a lot of that in motion prior to the acquisition, how does that all work? >> I think we've really been empowered by IBM. >> Yep, absolutely. >> Yeah. >> There's no question about that, and it's about finding the win-win. When we work with car manufacturers they're looking to have safe experiences for their drivers and we can help in that regard, and, as we move into autonomous vehicles, there's just going to be even more demand for very high resolution, accurate weather information. >> Am I correct at all, the weather data from all these devices actually goes back to the IBM cloud, is that right, and that's where the models are iterated and developed, is that correct, or does some of it stay out in the network? >> It's all a cloud-based operation that's here. We do do some, I mentioned before that we're working with IBM research on next generation high-performance computing which is actually, it can be cloud-based, but it's also on Prim-based, because of the very large cores we need for computing these models. We're going to run a very high-resolution model globally at a very high frequency. >> So, thinking about some of the industries that you're helping, I mean, you mentioned retail before. Obviously, government's very interested in this. I would imagine investors are interested in the weather in a big way. >> Yeah. >> Maybe you could talk about some of the more interesting industries, use cases, business models. >> Yeah, there's a lot out there, there's traditional ones we've served for years like energy traders that are very interested in, you know, because they're trying to make decisions about that. The financial services sector is also very interested. When they can get some additional insights through footfall traffic, if they know certain stores are seeing more footfall traffic, that will give them some indication, a little edge up in the marketplace for that. So, we see those kind of things, and other traditional areas as well, agriculture, what you would expect there. >> So people, you know, you hear a lot of talk in the press about artificial intelligence and Elon Musk predictions and the like, but here's an example where machine intelligence, everybody welcomes, keeps getting better and better and better. How far could we take AI and weather? Where do you see this going in the next 10 years? >> So, on the consumer side, I think it's really about transforming the way that we're delivering weather on the digital platform, the new age of the weather app will say, and, really, users want a personalized experience. They want to know how the weather's going to impact me, but they don't want to personalize, right? So, that's where machine learning is coming in, that we can be able to provide those insights. We'll know that, maybe, you're an allergy sufferer or migraine sufferer, and we're going to tell you that the conditions are right for that you might have symptoms related to that around health. So, there's a lot of ways, on the consumer side, more personalized experience, giving you more assurance that you don't have to, necessarily, go to the app to find information. We're going to send it to you more proactively, and, so, machine learning is helping us do that cognitive science as well. So, it's a pretty exciting time to be part of the weather. >> Yeah, that bum knee I have, you know, you might want to get ahead of the pain. >> That's right, with the arthritis, yes, yes, so, definitely. >> Alright, Mary, we'll give you last word on IBM Think and, you know, the whole trend of AI and weather. >> So, I think it's really exciting. I think Ginni says it really well. It's about AI and the person as well. You know, AI doesn't take over. It's really finding the way to AI to really assist decision makers and that's we're going on the business end of things is really sorting through tons and tons of data to really provide the insights that people can make, businesses can make really great decisions. >> Well, it's always been a really fascinating acquisition to me, and, now, just to see how it's evolving is really amazing. So, Sheri and Mary, thanks very much for coming on the Cube >> Thank you. >> and sharing your experiences. >> Thanks so much. >> Great, thank you. >> You're welcome, alright, keep it right there, everybody, you're watching the Cube. We're live from Think 2018 and we'll be right back. (techno beat)

Published Date : Mar 21 2018

SUMMARY :

Narrator: From Las Vegas, it's the Cube, as the global head of consumer business When IBM acquired the Weather Company, of the business to do exactly the same thing. So, talk about your respective roles. In our field, the forecast and some of the weather data Yeah, I mean, we all look at the weather. encountered in the East Coast. in bringing the next generation weather model to market, So, how do you guys make money? of Watson after the acquisition on the consumer side, So, that's your customers using Watson One of the products we created is called Weather FX, For real, yeah, I guess, you know, I mean, we want to ask you about your title, So, here in the US, we transmit, I look at the Weather Company as There's obviously the weather data which is really powerful, to help you with your forecast? So, as the storm comes through, go ahead, please. So, that's one of the ways that we're using I mean, the weather forecast, for years, of the forecast over the last decade? So, one of the things that we've really So, all of that will come in to improve forecasting. So, this requires partnerships with all that and it's about finding the win-win. on Prim-based, because of the very large cores that you're helping, I mean, you mentioned retail before. the more interesting industries, use cases, that are very interested in, you know, and the like, but here's an example of the weather app will say, and, really, of the pain. with the arthritis, yes, yes, so, definitely. and, you know, the whole trend of AI and weather. It's about AI and the person as well. So, Sheri and Mary, thanks very much We're live from Think 2018 and we'll be right back.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

IBMORGANIZATION

0.99+

Sheri BachsteinPERSON

0.99+

Mary GlackinPERSON

0.99+

MaryPERSON

0.99+

National Weather ServiceORGANIZATION

0.99+

SheriPERSON

0.99+

Bill BelichickPERSON

0.99+

Ginni RomettyPERSON

0.99+

USLOCATION

0.99+

GoogleORGANIZATION

0.99+

DavePERSON

0.99+

AfricaLOCATION

0.99+

Las VegasLOCATION

0.99+

hundreds of yearsQUANTITY

0.99+

Weather CompanyORGANIZATION

0.99+

OneQUANTITY

0.99+

GinniPERSON

0.99+

250 million usersQUANTITY

0.99+

two reasonsQUANTITY

0.99+

WatsonTITLE

0.98+

about 270,000QUANTITY

0.98+

twice a dayQUANTITY

0.98+

oneQUANTITY

0.97+

East CoastLOCATION

0.97+

todayDATE

0.97+

Elon MuskPERSON

0.97+

last decadeDATE

0.95+

tons and tons of dataQUANTITY

0.92+

WazeORGANIZATION

0.9+

Weather UndergroundORGANIZATION

0.87+

FortuneORGANIZATION

0.83+

WatsonORGANIZATION

0.82+

next 10 yearsDATE

0.8+

IBM WatsonORGANIZATION

0.79+

Think conferenceEVENT

0.77+

first implementationsQUANTITY

0.76+

CubeCOMMERCIAL_ITEM

0.75+

Think 2018EVENT

0.73+

couple aspectsQUANTITY

0.69+

IBM ThinkORGANIZATION

0.68+

brandsQUANTITY

0.6+

dayQUANTITY

0.59+

Weather FXORGANIZATION

0.54+

2018EVENT

0.52+

yearsQUANTITY

0.49+