Hemanth Manda, IBM Cloud Pak
(soft electronic music) >> Welcome to this CUBE Virtual Conversation. I'm your host, Rebecca Knight. Today, I'm joined by Hermanth Manda. He is the Executive Director, IBM Data and AI, responsible for Cloud Pak for Data. Thanks so much for coming on the show, Hermanth. >> Thank you, Rebecca. >> So we're talking now about the release of Cloud Pak for Data version 3.5. I want to explore it for, from a lot of different angles, but do you want to just talk a little bit about why it is unique in the marketplace, in particular, accelerating innovation, reducing costs, and reducing complexity? >> Absolutely, Rebecca. I mean, this is something very unique from an IBM perspective. Frankly speaking, this is unique in the marketplace because what we are doing is we are bringing together all of our data and AI capabilities into a single offering, single platform. And we have continued, as I said, we made it run on any cloud. So we are giving customers the flexibility. So it's innovation across multiple fronts. It's still in consolidation. It's, in doing automation and infusing collaboration and also having customers to basically modernize to the cloud-native world and pick their own cloud which is what we are seeing in the market today. So I would say this is a unique across multiple fronts. >> When we talk about any new platform, one of the big concerns is always around internal skills and maintenance tasks. What changes are you introducing with version 3.5 that does, that help clients be more flexible and sort of streamline their tasks? >> Yeah, it's an interesting question. We are doing a lot of things with respect to 3.5, the latest release. Number one, we are simplifying the management of the platform, made it a lot simpler. We are infusing a lot of automation into it. We are embracing the concept of operators that are not open shelf has introduced into the market. So simple things such as provisioning, installation, upgrades, scaling it up and down, autopilot management. So all of that is taken care of as part of the latest release. Also, what we are doing is we are making the collaboration and user onboarding very easy to drive self service and use the productivity. So overall, this helps, basically, reduce the cost for our customers. >> One of the things that's so striking is the speed of the innovation. I mean, you've only been in the marketplace for two and a half years. This is already version 3.5. Can you talk a little bit about, about sort of the, the innovation that it takes to do this? >> Absolutely. You're right, we've been in the market for slightly over two and a half years, 3.5's our ninth release. So frankly speaking, for any company, or even for startups doing nine releases in 2.5 years is unheard of, and definitely unheard of at IBM. So we are acting and behaving like a startup while addressing the go to market, and the reach of IBM. So I would say that we are doing a lot here. And as I said before, we're trying to address the unique needs of the market, the need to modernize to the cloud-native architectures to move to the cloud also while addressing the needs of our existing customers, because there are two things we are trying to focus, here. First of all, make sure that we have a modern platform across the different capabilities in data and AI, that's number one. Number two is also how do we modernize our existing install base. We have six plus billion dollar business for data and AI across significant real estates. We're providing a platform through Cloud Pak for Data to those existing install base and existing customers to more nice, too. >> I want to talk about how you are addressing the needs of customers, but I want to delve into something you said earlier, and that is that you are behaving like a startup. How do you make sure that your employees have that kind of mindset that, that kind of experimental innovative, creative, resourceful mindset, particularly at a more mature company like IBM? What kinds of skills do you try to instill and cultivate in your, in your team? >> That's a very interesting question, Rebecca. I think there's no single answer, I would say. It starts with listening to the customers, trying to pay detailed attention to what's happening in the market. How competent is it reacting. Looking at the startups, themselves. What we did uniquely, that I didn't touch upon earlier is that we are also building an open ecosystem here, so we position ourselves as an open platform. Yes, there's a lot of IBM unique technology here, but we also are leveraging open source. We are, we have an ecosystem of 50 plus third party ISVs. So by doing that, we are able to drive a lot more innovation and a lot faster because when you are trying to do everything by yourself, it's a bit challenging. But when you're part of an open ecosystem, infusing open source and third party, it becomes a lot easier. In terms of culture, I just want to highlight one thing. I think we are making it a point to emphasize speed over being perfect, progress over perfection. And that, I think, that is something net new for IBM because at IBM, we pride ourselves in quality, scalability, trying to be perfect on day one. I think we didn't do that in this particular case. Initially, when we launched our offense two and a half years back, we tried to be quick to the market. Our time to market was prioritized over being perfect. But now that is not the case anymore, right? I think we will make sure we are exponentially better and those things are addressed for the past two and one-half years. >> Well, perfect is the enemy of the good, as we know. One of the things that your customers demand is flexibility when building with machine learning pipeline. What have you done to improve IBM machine learning tools on this platform? >> So there's a lot of things we've done. Number one, I want to emphasize our building AI, the initial problem that most of our customers concerned about, but in my opinion, that's 10% of the problem. Actually deploying those AI models or managing them and covering them at scales for the enterprise is a bigger challenge. So what we have is very unique. We have the end-to-end AI lifecycle, we have tools for all the way from building, deploying, managing, governing these models. Second is we are introducing net new capabilities as part of a latest release. We have this call or this new service called WMLA, Watson Machine Learning Accelerator that addresses the unique challenges of deep learning capabilities, managing GPUs, et cetera. We are also making the auto AI capabilities a lot more robust. And finally, we are introducing a net new concept called Federator Learning that allows you to build AI across distributed datasets, which is very unique. I'm not aware of any other vendor doing this, so you can actually have your data distributed across multiple clouds, and you can build an aggregated AI model without actually looking at the data that is spread across these clouds. And this concept, in my opinion, is going to get a lot more traction as we move forward. >> One of the things that IBM has always been proud of is the way it partners with ISVs and other vendors. Can you talk about how you work with your partners and foster this ecosystem of third-party capabilities that integrate into the platform? >> Yes, it's always a challenge. I mean, for this to be a platform, as I said before, you need to be open and you need to build an ecosystem. And so we made that a priority since day one and we have 53 third party ISVs, today. It's a chicken and egg problem, Rebecca, because you need to obviously showcase success and make it a priority for your partners to onboard and work with you closely. So, we obviously invest, we co-invest with our partners and we take them to market. We have different models. We have a tactical relationship with some of our third party ISVs. We also have a strategic relationship. So we partner with them depending on their ability to partner with us and we go invest and make sure that we are not only integrating them technically, but also we are integrating with them from a go-to-market perspective. >> I wonder if you can talk a little bit about the current environment that we're in. Of course, we're all living through a global health emergency in the form of the COVID-19 pandemic. So much of the knowledge work is being done from home. It is being done remotely. Teams are working asynchronously over different kinds of digital platforms. How have you seen these changes affect the team, your team at IBM, what kinds of new kinds of capabilities, collaborations, what kinds of skills have you seen your team have to gain and have to gain quite quickly in this environment? >> Absolutely. I think historically, IBM had quite a, quite a portion of our workforce working remotely so we are used to this, but not at the scale that the current situation has compelled us to. So we made a lot more investments earlier this year in digital technologies, whether it is Zoom and WebEx or trying to use tools, digital tools that helps us coordinate and collaborate effectively. So part of it is technical, right? Part of it is also a cultural shift. And that came all the way from our CEO in terms of making sure that we have the necessary processes in place to ensure that our employees are not in getting burnt out, that they're being productive and effective. And so a combination of what I would say, technical investments, plus process and leadership initiatives helped us essentially embrace the changes that we've seen, today. >> And I want you to close us out, here. Talk a little bit about the future, both for Cloud Pak for Data, but also for the companies and clients that you work for. What do you see in the next 12 to 24 months changing in the term, in terms of how we have re-imagined the future of work. I know you said this was already version nine. You've only been in the marketplace for, for not even three years. That's incredible innovation and speed. Talk a little bit about changes you see coming down the pike. >> So I think everything that we have done is going to get amplified and accelerated as we move forward, shift to cloud, embracing AI, adopting AI into business processes to automate and amplify new business models, collaboration, to a certain extent, consolidation of the different offerings into platforms. So all of this, we, I obviously see that being accelerated and that acceleration will continue as we move forward. And the real challenge I see with our customers and all the enterprises is, I see them in two buckets. There's one bucket which are resisting change, like to stick to the old concepts, and there's one bucket of enterprises who are embracing the change and moving forward, and actually get accelerating this transformation and change. I think it will be successful over the next one to five years. You know, it could be under the other bucket and if you're not, I think it's, you're going to get, you're going to miss out and that is getting amplified and accelerated, as we speak. >> So for those ones in the bucket that are resistant to the change, how do you get them onboard? I mean, this is classic change management that they teach at business schools around the world. But what are some advice that you would have to those who are resisting the change? >> So, and again, frankly speaking, we, at IBM, are going through that transition so I can speak from experience. >> Rebecca: You're drinking the Kool-Aid. >> Yeah, when, when I think, one way to address this is basically take one step at a time, like as opposed to completely revolutionizing the way you do your business. You can transform your business one step at a time while keeping the end objective as your goal, as your end goal. So, and it just want a little highlight that with full factor, that's exactly what we are enabling because what we do is we enable you to actually run anywhere you like. So if most of your systems, most of your data and your models, and analytics are on-premise, you can actually start your journey there while you plan for the future of a public cloud or a managed service. So my advice is pretty simple. You start the journey, but you can take, you can, you don't need to, you don't need to do it as a big bang. You, it could be a journey, it could be a gradual transformation, but you need to start the journey today. If you don't, you're going to miss out. >> Baby steps. Hey Hermanth Manda, thank you so much for joining us for this Virtual CUBE Conversation >> Thank you very much, Rebecca. >> I'm Rebecca Knight, stay tuned for more of theCUBE Virtual. (soft electronic music)
SUMMARY :
He is the Executive but do you want to just talk a little bit So we are giving one of the big concerns is of the platform, made it a lot simpler. the innovation that it takes to do this? the need to modernize to the and that is that you are is that we are also building of the good, as we know. that addresses the unique challenges One of the things that IBM has always and we have 53 third party ISVs, today. So much of the knowledge And that came all the way from our CEO and clients that you work for. over the next one to five years. in the bucket that are So, and again, frankly speaking, is we enable you to actually Hey Hermanth Manda, thank you so much for more of theCUBE Virtual.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Rebecca | PERSON | 0.99+ |
Rebecca Knight | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Hermanth | PERSON | 0.99+ |
Hemanth Manda | PERSON | 0.99+ |
10% | QUANTITY | 0.99+ |
two and a half years | QUANTITY | 0.99+ |
nine releases | QUANTITY | 0.99+ |
two things | QUANTITY | 0.99+ |
Hermanth Manda | PERSON | 0.99+ |
Second | QUANTITY | 0.99+ |
IBM Data | ORGANIZATION | 0.99+ |
one bucket | QUANTITY | 0.99+ |
2.5 years | QUANTITY | 0.99+ |
ninth release | QUANTITY | 0.99+ |
Today | DATE | 0.99+ |
50 plus | QUANTITY | 0.99+ |
One | QUANTITY | 0.99+ |
over two and a half years | QUANTITY | 0.98+ |
five years | QUANTITY | 0.98+ |
two buckets | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
both | QUANTITY | 0.98+ |
First | QUANTITY | 0.97+ |
three years | QUANTITY | 0.97+ |
WMLA | ORGANIZATION | 0.97+ |
COVID-19 pandemic | EVENT | 0.96+ |
Kool-Aid | ORGANIZATION | 0.96+ |
Watson Machine Learning Accelerator | ORGANIZATION | 0.96+ |
Cloud Pak for Data | TITLE | 0.96+ |
single platform | QUANTITY | 0.96+ |
24 months | QUANTITY | 0.96+ |
one thing | QUANTITY | 0.95+ |
one | QUANTITY | 0.95+ |
Zoom | ORGANIZATION | 0.95+ |
WebEx | ORGANIZATION | 0.94+ |
Number two | QUANTITY | 0.92+ |
day one | QUANTITY | 0.9+ |
Cloud Pak | TITLE | 0.9+ |
single offering | QUANTITY | 0.89+ |
version 3.5 | OTHER | 0.87+ |
12 | QUANTITY | 0.87+ |
one step | QUANTITY | 0.86+ |
53 third party | QUANTITY | 0.84+ |
two and a half years back | DATE | 0.84+ |
single answer | QUANTITY | 0.81+ |
year | QUANTITY | 0.8+ |
nine | OTHER | 0.79+ |
3.5 | OTHER | 0.78+ |
Cloud Pak for Data version 3.5 | TITLE | 0.76+ |
one way | QUANTITY | 0.74+ |
Number one | QUANTITY | 0.74+ |
six plus billion dollar | QUANTITY | 0.7+ |
party | QUANTITY | 0.61+ |
one-half years | QUANTITY | 0.61+ |
past two | DATE | 0.57+ |
3.5 | TITLE | 0.56+ |
version | QUANTITY | 0.56+ |
Cloud Pak | ORGANIZATION | 0.52+ |
Learning | OTHER | 0.46+ |
CUBE | ORGANIZATION | 0.43+ |
Cloud | COMMERCIAL_ITEM | 0.4+ |