Ash Naseer, Warner Bros. Discovery | Busting Silos With Monocloud
(vibrant electronic music) >> Welcome back to SuperCloud2. You know, this event, and the Super Cloud initiative in general, it's an open industry-wide collaboration. Last August at SuperCloud22, we really honed in on the definition, which of course we've published. And there's this shared doc, which folks are still adding to and refining, in fact, just recently, Dr. Nelu Mihai added some critical points that really advanced some of the community's initial principles, and today at SuperCloud2, we're digging further into the topic with input from real world practitioners, and we're exploring that intersection of data, data mesh, and cloud, and importantly, the realities and challenges of deploying technology to drive new business capability, and I'm pleased to welcome Ash Naseer to the program. He's a Senior Director of Data Engineering at Warner Bros. Discovery. Ash, great to see you again, thanks so much for taking time with us. >> It's great to be back, these conversations are always very fun. >> I was so excited when we met last spring, I guess, so before we get started I wanted to play a clip from that conversation, it was June, it was at the Snowflake Summit in Las Vegas. And it's a comment that you made about your company but also data mesh. Guys, roll the clip. >> Yeah, so, when people think of Warner Bros., you always think of the movie studio. But we're more than that, right, I mean, you think of HBO, you think of TNT, you think of CNN. We have 30 plus brands in our portfolio, and each have their own needs. So the idea of a data mesh really helps us because what we can do is we can federate access across the company, so that CNN can work at their own pace, you know, when there's election season, they can ingest their own data. And they don't have to bump up against, as an example, HBO, if Game of Thrones is goin' on. >> So-- Okay, so that's pretty interesting, so you've got these sort of different groups that have different data requirements inside of your organization. Now data mesh, it's a relatively new concept, so you're kind of ahead of the curve. So Ash, my question is, when you think about getting value from data, and how that's changed over the past decade, you've had pre-Hadoop, Hadoop, what do you see that's changed, now you got the cloud coming in, what's changed? What had to be sort of fixed? What's working now, and where do you see it going? >> Yeah, so I feel like in the last decade, we've gone through quite a maturity curve. I actually like to say that we're in the golden age of data, because the tools and technology in the data space, particularly and then broadly in the cloud, they allow us to do things that we couldn't do way back when, like you suggested, back in the Hadoop era or even before that. So there's certainly a lot of maturity, and a lot of technology that has come about. So in terms of the good, bad, and ugly, so let me kind of start with the good, right? In terms of bringing value from the data, I really feel like we're in this place where the folks that are charged with unlocking that value from the data, they're actually spending the majority of their time actually doing that. And what do I mean by that? If you think about it, 10 years ago, the data scientist was the person that was going to sort of solve all of the data problems in a company. But what happened was, companies asked these data scientists to come in and do a multitude of things. And what these data scientists found out was, they were spending most of their time on, really, data wrangling, and less on actually getting the value out of the data. And in the last decade or so, I feel like we've made the shift, and we realize that data engineering, data management, data governance, those are as important practices as data science, which is sort of getting the value out of the data. And so what that has done is, it has freed up the data scientist and the business analyst and the data analyst, and the BI expert, to really focus on how to get value out of the data, and spend less time wrangling data. So I really think that that's the good. In terms of the bad, I feel like, there's a lot of legacy data platforms out there, and I feel like there's going to be a time where we'll be in that hybrid mode. And then the ugly, I feel like, with all the data and all the technology, creates another problem of itself. Because most companies don't have arms around their data, and making sure that they know who's using the data, what they're using for, and how can the company leverage the collective intelligence. That is a bigger problem to solve today than 10 years ago. And that's where technologies like the data mesh come in. >> Yeah, so when I think of data mesh, and I say, you're an early practitioner of data mesh, you mentioned legacy technology, so the concept of data mesh is inclusive. In theory anyway, you're supposed to be including the legacy technologies. Whether it's a data lake or data warehouse or Oracle or Snowflake or whatever it is. And when you think about Jamak Dagani's principles, it's domain-centric ownership, data as product. And that creates challenges around self-serve infrastructure and automated governance, and then when you start to combine these different technologies. You got legacy, you got cloud. Everything's different. And so you have to figure out how to deal with that, so my question is, how have you dealt with that, and what role has the cloud played in solving those problems, in particular, that self-serve infrastructure, and that automated governance, and where are we in terms of solving that problem from a practitioner's standpoint? >> Yeah, I always like to say that data is a team sport, and we should sort of think of it as such, and that's, I feel like, the key of the data mesh concept, is treating it as a team sport. A lot of people ask me, they're like, "Oh hey, Ash, I've heard about this thing called data mesh. "Where can I buy one?" or, "what's the technology that I use to get a data mesh? And the reality is that there isn't one technology, you can't really buy a data mesh. It's really a way of life, it's how organizations decide to approach data, like I said, back to a team sport analogy, making sure that everyone has the seat on the table, making sure that we embrace the fact that we have a lot of data, we have a lot of data problems to solve. And the way we'll be successful is to make everyone inclusive. You know, you think about the old days, Data silos or shadow IT, some might call it. That's been around for decades. And what hasn't changed was this notion that, hey, everything needs to be sort of managed centrally. But with the cloud and with the technologies that we have today, we have the right technology and the tooling to democratize that data, and democratize not only just the access, but also sort of building building blocks and sort of taking building blocks which are relevant to your product or your business. And adding to the overall data mesh. We've got all that technology. The challenge is for us to really embrace it, and make sure that we implement it from an organizational standpoint. >> So, thinking about super cloud, there's a layer that lives above the clouds and adds value. And you think about your brands you got 30 brands, you mentioned shadow IT. If, let's say, one of those brands, HBO or TNT, whatever. They want to go, "Hey, we really like Google's analytics tools," and they maybe go off and build something, I don't know if that's even allowed, maybe it's not. But then you build this data mesh. My question is around multi-cloud, cross cloud, super cloud if you will. Is that a advantage for you as a practitioner, or does that just make things more complicated? >> I really love the idea of a multi-cloud. I think it's great, I think that it should have been the norm, not the exception, I feel like people talk about it as if it's the exception. That should have been the case. I will say, though, I feel like multi-cloud should evolve organically, so back to your point about some of these different brands, and, you know, different brands or different business units. Or even in a merger and acquisitions situation, where two different companies or multiple different companies come together with different technology stacks. You know, I feel like that's an organic evolution, and making sure that we use the concepts and the technologies around the multi-cloud to bring everyone together. That's where we need to be, and again, it talks to the fact that each of those business units and each of those groups have their own unique needs, and we need to make sure that we embrace that and we enable that, rather than stifling everything. Now where I have a little bit of a challenge with the multi-cloud is when technology leaders try to build it by design. So there's a notion there that, "Hey, you need to sort of diversify "and don't put all your eggs in one basket." And so we need to have this multi-cloud thing. I feel like that is just sort of creating more complexity where it doesn't need to be, we can all sort of simplify our lives, but where it evolves organically, absolutely, I think that's the right way to go. >> But, so Ash, if it evolves organically don't you need some kind of cloud interpreter, to create a common experience across clouds, does that exist today? What are your thoughts on that? >> There is a lot of technology that exists today, and that helps go between these different clouds, a lot of these sort of cloud agnostic technologies that you talked about, the Snowflakes and the Databricks and so forth of the world, they operate in multiple clouds, they operate in multiple regions, within a given cloud and multiple clouds. So they span all of that, and they have the tools and technology, so, I feel like the tooling is there. There does need to be more of an evolution around the tooling and I think the market's need are going to dictate that, I feel like the market is there, they're asking for it, so, there's definitely going to be that evolution, but the technology is there, I think just making sure that we embrace that and we sort of embrace that as a challenge and not try to sort of shut all of that down and box everything into one. >> What's the biggest challenge, is it governance or security? Or is it more like you're saying, adoption, cultural? >> I think it's a combination of cultural as well as governance. And so, the cultural side I've talked about, right, just making sure that we give these different teams a seat at the table, and they actually bring that technology into the mix. And we use the modern tools and technologies to make sure that everybody sort of plays nice together. That is definitely, we have ways to go there. But then, in terms of governance, that is another big problem that most companies are just starting to wrestle with. Because like I said, I mean, the data silos and shadow IT, that's been around there, right? The only difference is that we're now sort of bringing everything together in a cloud environment, the collective organization has access to that. And now we just realized, oh we have quite a data problem at our hands, so how do we sort of organize this data, make sure that the quality is there, the trust is there. When people look at that data, a lot of those questions are now coming to the forefront because everything is sort of so transparent with the cloud, right? And so I feel like, again, putting in the right processes, and the right tooling to address that is going to be critical in the next years to come. >> Is sharing data across clouds, something that is valuable to you, or even within a single cloud, being able to share data. And my question is, not just within your organization, but even outside your organization, is that something that has sort of hit your radar or is it mature or is that something that really would add value to your business? >> Data sharing is huge, and again, this is another one of those things which isn't new. You know, I remember back in the '90s, when we had to share data externally, with our partners or our vendors, they used to physically send us stacks of these tapes, or physical media on some truck. And we've evolved since then, right, I mean, it went from that to sharing files online and so forth. But data sharing as a concept and as a concept which is now very frictionless, through these different technologies that we have today, that is very new. And that is something, like I said, it's always been going on. But that needs to be really embraced more as well. We as a company heavily leverage data sharing between our own different brands and business units, that helps us make that data mesh, so that when CNN, as an example, builds their own data model based on election data and the kinds of data that they need, compare that with other data in the rest of the company, sports, entertainment, and so forth and so on. Everyone has their unique data, but that data sharing capability brings it together wherever there is a need. So you think about having a Tiger Woods documentary, as an example, on HBO Max and making sure that you reach the audiences that are interested in golf and interested in sports and so forth, right? That all comes through the magic of data sharing, so, it's really critical, internally, for us. And then externally as well, because just understanding how our products are doing on our partners' networks and different distribution channels, that's important, and then just understanding how our consumers are consuming it off properties, right, I mean, we have brands that transcend just the screen, right? We have a lot of physical merchandise that you can buy in the store. So again, understanding who's buying the Batman action figures after the Batman movie was released, that's another critical insight. So it all gets enabled through data sharing, and something we rely heavily on. >> So I wanted to get your perspective on this. So I feel like the nirvana of data mesh is if I want to use Google BigQuery, an Oracle database, or a Microsoft database, or Snowflake, Databricks, Amazon, whatever. That that's a node on the mesh. And in the perfect world, you can share that data, it can be governed, I don't think we're quite there today, so. But within a platform, maybe it's within Google or within Amazon or within Snowflake or Databricks. If you're in that world, maybe even Oracle. You actually can do some levels of data sharing, maybe greater with some than others. Do you mandate as an organization that you have to use this particular data platform, or are you saying "Hey, we are architecting a data mesh for the future "where we believe the technology will support that," or maybe you've invented some technology that supports that today, can you help us understand that? >> Yeah, I always feel like mandate is a strong area, and it breeds the shadow IT and the data silos. So we don't mandate, we do make sure that there's a consistent set of governance rules, policies, and tooling that's there, so that everyone is on the same page. However, at the same time our focus is really operating in a federated way, that's been our solution, right? Is to make sure that we work within a common set of tooling, which may be different technologies, which in some cases may be different clouds. Although we're not that multi-cloud. So what we're trying to do is making sure that everyone who has that technology already built, as long as it sort of follows certain standards, it's modern, it has the capabilities that will eventually allow us to be successful and eventually allow for that data sharing, amongst those different nodes, as you put it. As long as that's the case, and as long as there's a governance layer, a master governance layer, where we know where all that data is and who has access to what and we can sort of be really confident about the quality of the data, as long as that case, our approach to that is really that federated approach. >> Sorry, did I hear you correctly, you're not multi-cloud today? >> Yeah, that's correct. There are certain spots where we use that, but by and large, we rely on a particular cloud, and that's just been, like I said, it's been the evolution, it was our evolution. We decided early on to focus on a single cloud, and that's the direction we've been going in. >> So, do you want to go to a multi-cloud, or, you mentioned organic before, if a business unit wants to go there, as long as they're adhering to those standards that you put out, maybe recommendations, that that's okay? I guess my question is, does that bring benefit to your business that you'd like to tap, or do you feel like it's not necessary? >> I'll go back to the point of, if it happens organically, we're going to be open about it. Obviously we'll have to look at every situations, not all clouds are created equal as well, so there's a number of different considerations. But by and large, when it happens organically, the key is time to value, right? How do you quickly bring those technologies in, as long as you could share the data, they're interconnected, they're secured, they're governed, we are confident on the quality, as long as those principles are met, we could definitely go in that direction. But by and large, we're sort of evolving in a singular direction, but even within a singular cloud, we're a global company. And we have audiences around the world, so making sure that even within a single cloud, those different regions interoperate as one, that's a bigger challenge that we're having to solve as well. >> Last question is kind of to the future of data and cloud and how it's going to evolve, do you see a day when companies like yours are increasingly going to be offering data, their software, services, and becoming more of a technology company, sort of pointing your tooling and your proprietary knowledge at the external world, as an opportunity, as a business opportunity? >> That's a very interesting concept, and I know companies have done that, and some of them have been extremely successful, I mean, Amazon is the biggest example that comes to mind, right-- >> Yeah. >> When they launched AWS, something that they had that expertise they had internally, and they offered it to the world as a product. But by and large, I think it's going to be far and few between, especially, it's going to be focused on companies that have technology as their DNA, or almost like in the technology sector, building technology. Most other companies have different markets that they are addressing. And in my opinion, a lot of these companies, what they're trying to do is really focus on the problems that we can solve for ourselves, I think there are more problems than we have people and expertise. So my guess is that most large companies, they're going to focus on solving their own problems. A few, like I said, more tech-focused companies, that would want to be in that business, would probably branch out, but by and large, I think companies will continue to focus on serving their customers and serving their own business. >> Alright, Ash, we're going to leave it there, Ash Naseer. Thank you so much for your perspectives, it was great to see you, I'm sure we'll see you face-to-face later on this year. >> This is great, thank you for having me. >> Ah, you're welcome, alright. Keep it right there for more great content from SuperCloud2. We'll be right back. (gentle percussive music)
SUMMARY :
and the Super Cloud initiative in general, It's great to be back, And it's a comment that So the idea of a data mesh really helps us and how that's changed and making sure that they and that automated governance, and make sure that we implement it And you think about your brands and making sure that we use the concepts and so forth of the world, make sure that the quality or is it mature or is that something and the kinds of data that they need, And in the perfect world, so that everyone is on the same page. and that's the direction the key is time to value, right? and they offered it to Thank you so much for your perspectives, Keep it right there
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
CNN | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Warner Bros. | ORGANIZATION | 0.99+ |
TNT | ORGANIZATION | 0.99+ |
Ash Naseer | PERSON | 0.99+ |
HBO | ORGANIZATION | 0.99+ |
Ash | PERSON | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
Nelu Mihai | PERSON | 0.99+ |
each | QUANTITY | 0.99+ |
June | DATE | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
Game of Thrones | TITLE | 0.99+ |
Databricks | ORGANIZATION | 0.99+ |
Last August | DATE | 0.99+ |
30 brands | QUANTITY | 0.99+ |
30 plus brands | QUANTITY | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
last spring | DATE | 0.99+ |
Batman | PERSON | 0.99+ |
Jamak Dagani | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.98+ |
one basket | QUANTITY | 0.98+ |
10 years ago | DATE | 0.98+ |
today | DATE | 0.98+ |
last decade | DATE | 0.97+ |
Snowflakes | EVENT | 0.95+ |
single cloud | QUANTITY | 0.95+ |
one | QUANTITY | 0.95+ |
two different companies | QUANTITY | 0.94+ |
SuperCloud2 | ORGANIZATION | 0.94+ |
Tiger Woods | PERSON | 0.94+ |
Warner Bros. Discovery | ORGANIZATION | 0.92+ |
decades | QUANTITY | 0.88+ |
this year | DATE | 0.85+ |
SuperCloud22 | EVENT | 0.84+ |
'90s | DATE | 0.84+ |
SuperCloud2 | EVENT | 0.83+ |
Monocloud | ORGANIZATION | 0.83+ |
Snowflake Summit | LOCATION | 0.77+ |
Super Cloud | EVENT | 0.77+ |
a day | QUANTITY | 0.74+ |
Busting Silos With | TITLE | 0.73+ |
Hadoop era | DATE | 0.66+ |
past decade | DATE | 0.63+ |
Databricks | EVENT | 0.63+ |
Max | TITLE | 0.49+ |
BigQuery | TITLE | 0.46+ |
Discovery | ORGANIZATION | 0.44+ |
Mitesh Shah, Alation & Ash Naseer, Warner Bros Discovery | Snowflake Summit 2022
(upbeat music) >> Welcome back to theCUBE's continuing coverage of Snowflake Summit '22 live from Caesar's Forum in Las Vegas. I'm Lisa Martin, my cohost Dave Vellante, we've been here the last day and a half unpacking a lot of news, a lot of announcements, talking with customers and partners, and we have another great session coming for you next. We've got a customer and a partner talking tech and data mash. Please welcome Mitesh Shah, VP in market strategy at Elation. >> Great to be here. >> and Ash Naseer great, to have you, senior director of data engineering at Warner Brothers Discovery. Welcome guys. >> Thank you for having me. >> It's great to be back in person and to be able to really get to see and feel and touch this technology, isn't it? >> Yeah, it is. I mean two years or so. Yeah. Great to feel the energy in the conference center. >> Yeah. >> Snowflake was virtual, I think for two years and now it's great to kind of see the excitement firsthand. So it's wonderful. >> Th excitement, but also the boom and the number of customers and partners and people attending. They were saying the first, or the summit in 2019 had about 1900 attendees. And this is around 10,000. So a huge jump in a short time period. Talk a little bit about the Elation-Snowflake partnership and probably some of the acceleration that you guys have been experiencing as a Snowflake partner. >> Yeah. As a snowflake partner. I mean, Snowflake is an investor of us in Elation early last year, and we've been a partner for, for longer than that. And good news. We have been awarded Snowflake partner of the year for data governance, just earlier this week. And that's in fact, our second year in a row for winning that award. So, great news on that front as well. >> Repeat, congratulations. >> Repeat. Absolutely. And we're going to hope to make it a three-peat as well. And we've also been awarded industry competency badges in five different industries, those being financial services, healthcare, retail technology, and Median Telcom. >> Excellent. Okay. Going to right get into it. Data mesh. You guys actually have a data mesh and you've presented at the conference. So, take us back to the beginning. Why did you decide that you needed to implement something like data mesh? What was the impetus? >> Yeah. So when people think of Warner brothers, you always think of like the movie studio, but we're more than that, right? I mean, you think of HBO, you think of TNT, you think of CNN, we have 30 plus brands in our portfolio and each have their own needs. So the idea of a data mesh really helps us because what we can do is we can federate access across the company so that, you know, CNN can work at their own pace. You know, when there's election season, they can ingest their own data and they don't have to, you know, bump up against as an example, HBO, if Game of Thrones is going on. >> So, okay. So the, the impetus was to serve those lines of business better. Actually, given that you've got these different brands, it was probably easier than most companies. Cause if you're, let's say you're a big financial services company, and now you have to decide who owns what. CNN owns its own data products, HBO. Now, do they decide within those different brands, how to distribute even further? Or is it really, how deep have you gone in that decentralization? >> That's a great question. It's a very close partnership, because there are a number of data sets, which are used by all the brands, right? You think about people browsing websites, right? You know, CNN has a website, Warner brothers has a website. So for us to ingest that data for each of the brands to ingest that data separately, that means five different ways of doing things and you know, a big environment, right? So that is where our team comes into play. We ingest a lot of the common data sets, but like I said, any unique data sets, data sets regarding theatrical as an example, you know, Warner brothers does it themselves, you know, for streaming, HBO Max, does it themselves. So we kind of operate in partnership. >> So do you have a centralized data team and also decentralized data teams, right? >> That's right. >> So I love this conversation because that was heresy 10 years ago, five years ago, even, cause that's inefficient. But you've, I presume you've found that it's actually more productive in terms of the business output, explain that dynamic. >> You know, you bring up such a good point. So I, you know, I consider myself as one of the dinosaurs who started like 20 plus years ago in this industry. And back then, we were all taught to think of the data warehouse as like a monolithic thing. And the reason for that is the technology wasn't there. The technology didn't catch up. Now, 20 years later, the technology is way ahead, right? But like, our mindset's still the same because we think of data warehouses and data platforms still as a monolithic thing. But if you really sort of remove that sort of mental barrier, if you will, and if you start thinking about, well, how do I sort of, you know, federate everything and make sure that you let folks who are building, or are closest to the customer or are building their products, let them own that data and have a partnership. The results have been amazing. And if we were only sort of doing it as a centralized team, we would not be able to do a 10th of what we do today. So it's that massive scale in, in our company as well. >> And I should have clarified, when we talk about data mesh are we talking about the implementing in practice, the octagon sort of framework, or is this sort of your own sort of terminology? >> Well, so the interesting part is four years ago, we didn't have- >> It didn't exist. >> Yeah. It didn't exist. And, and so we, our principle was very simple, right? When we started out, we said, we want to make sure that our brands are able to operate independently with some oversight and guidance from our technology teams, right? That's what we set out to do. We did that with Snowflake by design because Snowflake allows us to, you know, separate those, those brands into different accounts. So that was done by design. And then the, the magic, I think, is the Snowflake data sharing where, which allows us to sort of bring data in here once, and then share it with whoever needs it. So think about HBO Max. On HBO Max, You not only have HBO Max content, but content from CNN, from Cartoon Network, from Warner Brothers, right? All the movies, right? So to see how The Batman movie did in theaters and then on streaming, you don't need, you know, Warner brothers doesn't need to ingest the same streaming data. HBO Max does it. HBO Max shares it with Warner brothers, you know, store once, share many times, and everyone works at their own pace. >> So they're building data products. Those data products are discoverable APIs, I presume, or I guess maybe just, I guess the Snowflake cloud, but very importantly, they're governed. And that's correct, where Elation comes in? >> That's precisely where Elation comes in, is where sort of this central flexible foundation for data governance. You know, you mentioned data mesh. I think what's interesting is that it's really an answer to the bottlenecks created by centralized IT, right? There's this notion of decentralizing that the data engineers and making the data domain owners, the people that know the data the best, have them be in control of publishing the data to the data consumers. There are other popular concepts actually happening right now, as we speak, around modern data stack. Around data fabric that are also in many ways underpinned by this notion of decentralization, right? These are concepts that are underpinned by decentralization and as the pendulum swings, sort of between decentralization and centralization, as we go back and forth in the world of IT and data, there are certain constants that need to be centralized over time. And one of those I believe is very much a centralized platform for data governance. And that's certainly, I think where we come in. Would love to hear more about how you use Elation. >> Yeah. So, I mean, elation helps us sort of, as you guys say, sort of, map, the treasure map of the data, right? So for consumers to find where their data is, that's where Elation helps us. It helps us with the data cataloging, you know, storing all the metadata and, you know, users can go in, they can sort of find, you know, the data that they need and they can also find how others are using data. So it's, there's a little bit of a crowdsourcing aspect that Elation helps us to do whereby you know, you can see, okay, my peer in the other group, well, that's how they use this piece of data. So I'm not going to spend hours trying to figure this out. You're going to use the query that they use. So yeah. >> So you have a master catalog, I presume. And then each of the brands has their own sub catalogs, is that correct? >> Well, for the most part, we have that master catalog and then the brands sort of use it, you know, separately themselves. The key here is all that catalog, that catalog isn't maintained by a centralized group as well, right? It's again, maintained by the individual teams and not only in the individual teams, but the folks that are responsible for the data, right? So I talked about the concept of crowdsourcing, whoever sort of puts the data in, has to make sure that they update the catalog and make sure that the definitions are there and everything sort of in line. >> So HBO, CNN, and each have their own, sort of access to their catalog, but they feed into the master catalog. Is that the right way to think about it? >> Yeah. >> Okay. And they have their own virtual data warehouses, right? They have ownership over that? They can spin 'em up, spin 'em down as they see fit? Right? And they're governed. >> They're governed. And what's interesting is it's not just governed, right? Governance is a, is a big word. It's a bit nebulous, but what's really being enabled here is this notion of self-service as well, right? There's two big sort of rockets that need to happen at the same time in any given organization. There's this notion that you want to put trustworthy data in the hands of data consumers, while at the same time mitigating risk. And that's precisely what Elation does. >> So I want to clarify this for the audience. So there's four principles of database. This came after you guys did it. And I wonder how it aligns. Domain ownership, give data, as you were saying to the, to the domain owners who have context, data as product, you guys are building data products, and that creates two problems. How do you give people self-service infrastructure and how do you automate governance? So the first two, great. But then it creates these other problems. Does that align with your philosophy? Where's alignment? What's different? >> Yeah. Data products is exactly where we're going. And that sort of, that domain based design, that's really key as well. In our business, you think about who the customer is, as an example, right? Depending on who you ask, it's going to be, the answer might be different, you know, to the movie business, it's probably going to be the person who watches a movie in a theater. To the streaming business, to HBO Max, it's the streamer, right? To others, someone watching live CNN on their TV, right? There's yet another group. Think about all the franchising we do. So you see Batman action figures and T-shirts, and Warner brothers branded stuff in stores, that's yet another business unit. But at the end of the day, it's not a different person, it's you and me, right? We do all these things. So the domain concept, make sure that you ingest data and you bring data relevant to the context, however, not sort of making it so stringent where it cannot integrate, and then you integrate it at a higher level to create that 360. >> And it's discoverable. So the point is, I don't have to go tap Ash on the shoulder, say, how do I get this data? Is it governed? Do I have access to it? Give me the rules of it. Just, I go grab it, right? And the system computationally automates whether or not I have access to it. And it's, as you say, self-service. >> In this case, exactly right. It enables people to just search for data and know that when they find the data, whether it's trustworthy or not, through trust flags, and the like, it's doing both of those things at the same time. >> How is it an enabler of solving some of the big challenges that the media and entertainment industry is going through? We've seen so much change the last couple of years. The rising consumer expectations aren't going to go back down. They're only going to come up. We want you to serve us up content that's relevant, that's personalized, that makes sense. I'd love to understand from your perspective, Mitesh, from an industry challenges perspective, how does this technology help customers like Warner Brothers Discovery, meet business customers, where they are and reduce the volume on those challenges? >> It's a great question. And as I mentioned earlier, we had five industry competency badges that were awarded to us by Snowflake. And one of those four, Median Telcom. And the reason for that is we're helping media companies understand their audiences better, and ultimately serve up better experiences for their audiences. But we've got Ash right here that can tell us how that's happening in practice. >> Yeah, tell us. >> So I'll share a story. I always like to tell stories, right? Once once upon a time before we had Elation in place, it was like, who you knew was how you got access to the data. So if I knew you and I knew you had access to a certain kind of data and your access to the right kind of data was based on the network you had at the company- >> I had to trust you. >> Yeah. >> I might not want to give up my data. >> That's it. And so that's where Elation sort of helps us democratize it, but, you know, puts the governance and controls, right? There are certain sensitive things as well, such as viewership, such as subscriber accounts, which are very important. So making sure that the right people have access to it, that's the other problem that Elation helps us solve. >> That's precisely part of our integration with Snowflake in particular, being able to define and manage policies within Elation. Saying, you know, certain people should have access to certain rows, doing column level masking. And having those policies actually enforced at the Snowflake data layer is precisely part of our value product. >> And that's automated. >> And all that's automated. Exactly. >> Right. So I don't have to think about it. I don't have to go through the tap on their shoulder. What has been the impact, Ash, on data quality as you've pushed it down into the domains? >> That's a great question. So it has definitely improved, but data quality is a very interesting subject, because back to my example of, you know, when we started doing things, we, you know, the centralized IT team always said, well, it has to be like this, Right? And if it doesn't fit in this, then it's bad quality. Well, sometimes context changes. Businesses change, right? You have to be able to react to it quickly. So making sure that a lot of that quality is managed at the decentralized level, at the place where you have that business context, that ensures you have the most up to date quality. We're talking about media industry changing so quickly. I mean, would we have thought three years ago that people would watch a lot of these major movies on streaming services? But here's the reality, right? You have to react and, you know, having it at that level just helps you react faster. >> So data, if I play that back, data quality is not a static framework. It's flexible based on the business context and the business owners can make those adjustments, cause they own the data. >> That's it. That's exactly it. >> That's awesome. Wow. That's amazing progress that you guys have made. >> In quality, if I could just add, it also just changes depending on where you are in your data pipeline stage, right? Data, quality data observability, this is a very fast evolving space at the moment, and if I look to my left right now, I bet you I can probably see a half-dozen quality observability vendors right now. And so given that and given the fact that Elation still is sort of a central hub to find trustworthy data, we've actually announced an open data quality initiative, allowing for best-of-breed data quality vendors to integrate with the platform. So whoever they are, whatever tool folks want to use, they can use that particular tool of choice. >> And this all runs in the cloud, or is it a hybrid sort of? >> Everything is in the cloud. We're all in the cloud. And you know, again, helps us go faster. >> Let me ask you a question. I could go on forever in this topic. One of the concepts that was put forth is whether it's a Snowflake data warehouse or a data bricks, data lake, or an Oracle data warehouse, they should all be inclusive. They should just be a node on the mesh. Like, wow, that sounds good. But I haven't seen it yet. Right? I'm guessing that Snowflake and Elation enable all the self-serve, all this automated governance, and that including those other items, it's got to be a one-off at this point in time. Do you ever see you expanding that scope or is it better off to just kind of leave it into the, the Snowflake data cloud? >> It's a good question. You know, I feel like where we're at today, especially in terms of sort of technology giving us so many options, I don't think there's a one size fits all. Right? Even though we are very heavily invested in Snowflake and we use Snowflake consistently across the organization, but you could, theoretically, could have an architecture that blends those two, right? Have different types of data platforms like a teradata or an Oracle and sort of bring it all together today. We have the technology, you know, that and all sorts of things that can make sure that you query on different databases. So I don't think the technology is the problem, I think it's the organizational mindset. I think that that's what gets in the way. >> Oh, interesting. So I was going to ask you, will hybrid tables help you solve that problem? And, maybe not, what you're saying, it's the organization that owns the Oracle database saying, Hey, we have our system. It processes, it works, you know, go away. >> Yeah. Well, you know, hybrid tables I think, is a great sort of next step in Snowflake's evolution. I think it's, in my opinion, I, think it's a game changer, but yeah. I mean, they can still exist. You could do hybrid tables right on Snowflake, or you could, you know, you could kind of coexist as well. >> Yeah. But, do you have a thought on this? >> Yeah, I do. I mean, we're always going to live in a time where you've got data distributed in throughout the organization and around the globe. And that could be even if you're all in on Snowflake, you could have data in Snowflake here, you could have data in Snowflake in EMEA and Europe somewhere. It could be anywhere. By the same token you might be using. Every organization is using on-premises systems. They have data, they naturally have data everywhere. And so, you know, this one solution to this is really centralizing, as I mentioned, not just governance, but also metadata about all of the data in your organization so that you can enable people to search and find and discover trustworthy data no matter where it is in your organization. >> Yeah. That's a great point. I mean, if you have the data about the data, then you can, you can treat these independent nodes. That's just that. Right? And maybe there's some advantages of putting it all in the Snowflake cloud, but to your point, organizationally, that's just not feasible. The whole, unfortunately, sorry, Snowflake, all the world's data is not going to go into Snowflake, but they play a key role in accelerating, what I'm hearing, your vision of data mesh. >> Yeah, absolutely. I think going forward in the future, we have to start thinking about data platforms as just one place where you sort of dump all the data. That's where the mesh concept comes in. It is going to be a mesh. It's going to be distributed and organizations have to be okay with that. And they have to embrace the tools. I mean, you know, Facebook developed a tool called Presto many years ago that that helps them solve exactly the same problem. So I think the technology is there. I think the organizational mindset needs to evolve. >> Yeah. Definitely. >> Culture. Culture is one of the hardest things to change. >> Exactly. >> Guys, this was a masterclass in data mesh, I think. Thank you so much for coming on talking. >> We appreciate it. Thank you so much. >> Of course. What Elation is doing with Snowflake and with Warner Brothers Discovery, Keep that content coming. I got a lot of stuff I got to catch up on watching. >> Sounds good. Thank you for having us. >> Thanks guys. >> Thanks, you guys. >> For Dave Vellante, I'm Lisa Martin. You're watching theCUBE live from Snowflake Summit '22. We'll be back after a short break. (upbeat music)
SUMMARY :
session coming for you next. and Ash Naseer great, to have you, in the conference center. and now it's great to kind of see the acceleration that you guys have of the year for data And we've also been awarded Why did you decide that you So the idea of a data mesh Or is it really, how deep have you gone the brands to ingest that data separately, terms of the business and make sure that you let allows us to, you know, separate those, guess the Snowflake cloud, of decentralizing that the data engineers the data cataloging, you know, storing all So you have a master that are responsible for the data, right? Is that the right way to think about it? And they're governed. that need to happen at the So the first two, great. the answer might be different, you know, So the point is, It enables people to just search that the media and entertainment And the reason for that is So if I knew you and I knew that the right people have access to it, Saying, you know, certain And all that's automated. I don't have to go through You have to react and, you know, It's flexible based on the That's exactly it. that you guys have made. and given the fact that Elation still And you know, again, helps us go faster. a node on the mesh. We have the technology, you that owns the Oracle database saying, you know, you could have a thought on this? And so, you know, this one solution I mean, if you have the I mean, you know, the hardest things to change. Thank you so much for coming on talking. Thank you so much. of stuff I got to catch up on watching. Thank you for having us. from Snowflake Summit '22.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Vellante | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
CNN | ORGANIZATION | 0.99+ |
HBO | ORGANIZATION | 0.99+ |
Mitesh Shah | PERSON | 0.99+ |
Ash Naseer | PERSON | 0.99+ |
Europe | LOCATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Mitesh | PERSON | 0.99+ |
Elation | ORGANIZATION | 0.99+ |
TNT | ORGANIZATION | 0.99+ |
Warner brothers | ORGANIZATION | 0.99+ |
EMEA | LOCATION | 0.99+ |
second year | QUANTITY | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
2019 | DATE | 0.99+ |
two years | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
Cartoon Network | ORGANIZATION | 0.99+ |
Game of Thrones | TITLE | 0.99+ |
two problems | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
Warner Brothers | ORGANIZATION | 0.99+ |
10th | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
Snowflake Summit '22 | EVENT | 0.99+ |
Warner brothers | ORGANIZATION | 0.99+ |
each | QUANTITY | 0.99+ |
four | QUANTITY | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
Median Telcom | ORGANIZATION | 0.99+ |
20 years later | DATE | 0.98+ |
both | QUANTITY | 0.98+ |
five different industries | QUANTITY | 0.98+ |
10 years ago | DATE | 0.98+ |
30 plus brands | QUANTITY | 0.98+ |
Alation | PERSON | 0.98+ |
four years ago | DATE | 0.98+ |
today | DATE | 0.98+ |
20 plus years ago | DATE | 0.97+ |
Warner Brothers Discovery | ORGANIZATION | 0.97+ |
One | QUANTITY | 0.97+ |
five years ago | DATE | 0.97+ |
Snowflake Summit 2022 | EVENT | 0.97+ |
three years ago | DATE | 0.97+ |
five different ways | QUANTITY | 0.96+ |
earlier this week | DATE | 0.96+ |
Snowflake | TITLE | 0.96+ |
Max | TITLE | 0.96+ |
early last year | DATE | 0.95+ |
about 1900 attendees | QUANTITY | 0.95+ |
Snowflake | EVENT | 0.94+ |
Ash | PERSON | 0.94+ |
three-peat | QUANTITY | 0.94+ |
around 10,000 | QUANTITY | 0.93+ |
Mitesh Shah, Alation & Ash Naseer, Warner Bros Discovery | Snowflake Summit 2022
(upbeat music) >> Welcome back to theCUBE's continuing coverage of Snowflake Summit '22 live from Caesar's Forum in Las Vegas. I'm Lisa Martin, my cohost Dave Vellante, we've been here the last day and a half unpacking a lot of news, a lot of announcements, talking with customers and partners, and we have another great session coming for you next. We've got a customer and a partner talking tech and data mash. Please welcome Mitesh Shah, VP in market strategy at Elation. >> Great to be here. >> and Ash Naseer great, to have you, senior director of data engineering at Warner Brothers Discovery. Welcome guys. >> Thank you for having me. >> It's great to be back in person and to be able to really get to see and feel and touch this technology, isn't it? >> Yeah, it is. I mean two years or so. Yeah. Great to feel the energy in the conference center. >> Yeah. >> Snowflake was virtual, I think for two years and now it's great to kind of see the excitement firsthand. So it's wonderful. >> Th excitement, but also the boom and the number of customers and partners and people attending. They were saying the first, or the summit in 2019 had about 1900 attendees. And this is around 10,000. So a huge jump in a short time period. Talk a little bit about the Elation-Snowflake partnership and probably some of the acceleration that you guys have been experiencing as a Snowflake partner. >> Yeah. As a snowflake partner. I mean, Snowflake is an investor of us in Elation early last year, and we've been a partner for, for longer than that. And good news. We have been awarded Snowflake partner of the year for data governance, just earlier this week. And that's in fact, our second year in a row for winning that award. So, great news on that front as well. >> Repeat, congratulations. >> Repeat. Absolutely. And we're going to hope to make it a three-peat as well. And we've also been awarded industry competency badges in five different industries, those being financial services, healthcare, retail technology, and Median Telcom. >> Excellent. Okay. Going to right get into it. Data mesh. You guys actually have a data mesh and you've presented at the conference. So, take us back to the beginning. Why did you decide that you needed to implement something like data mesh? What was the impetus? >> Yeah. So when people think of Warner brothers, you always think of like the movie studio, but we're more than that, right? I mean, you think of HBO, you think of TNT, you think of CNN, we have 30 plus brands in our portfolio and each have their own needs. So the idea of a data mesh really helps us because what we can do is we can federate access across the company so that, you know, CNN can work at their own pace. You know, when there's election season, they can ingest their own data and they don't have to, you know, bump up against as an example, HBO, if Game of Thrones is going on. >> So, okay. So the, the impetus was to serve those lines of business better. Actually, given that you've got these different brands, it was probably easier than most companies. Cause if you're, let's say you're a big financial services company, and now you have to decide who owns what. CNN owns its own data products, HBO. Now, do they decide within those different brands, how to distribute even further? Or is it really, how deep have you gone in that decentralization? >> That's a great question. It's a very close partnership, because there are a number of data sets, which are used by all the brands, right? You think about people browsing websites, right? You know, CNN has a website, Warner brothers has a website. So for us to ingest that data for each of the brands to ingest that data separately, that means five different ways of doing things and you know, a big environment, right? So that is where our team comes into play. We ingest a lot of the common data sets, but like I said, any unique data sets, data sets regarding theatrical as an example, you know, Warner brothers does it themselves, you know, for streaming, HBO Max, does it themselves. So we kind of operate in partnership. >> So do you have a centralized data team and also decentralized data teams, right? >> That's right. >> So I love this conversation because that was heresy 10 years ago, five years ago, even, cause that's inefficient. But you've, I presume you've found that it's actually more productive in terms of the business output, explain that dynamic. >> You know, you bring up such a good point. So I, you know, I consider myself as one of the dinosaurs who started like 20 plus years ago in this industry. And back then, we were all taught to think of the data warehouse as like a monolithic thing. And the reason for that is the technology wasn't there. The technology didn't catch up. Now, 20 years later, the technology is way ahead, right? But like, our mindset's still the same because we think of data warehouses and data platforms still as a monolithic thing. But if you really sort of remove that sort of mental barrier, if you will, and if you start thinking about, well, how do I sort of, you know, federate everything and make sure that you let folks who are building, or are closest to the customer or are building their products, let them own that data and have a partnership. The results have been amazing. And if we were only sort of doing it as a centralized team, we would not be able to do a 10th of what we do today. So it's that massive scale in, in our company as well. >> And I should have clarified, when we talk about data mesh are we talking about the implementing in practice, the octagon sort of framework, or is this sort of your own sort of terminology? >> Well, so the interesting part is four years ago, we didn't have- >> It didn't exist. >> Yeah. It didn't exist. And, and so we, our principle was very simple, right? When we started out, we said, we want to make sure that our brands are able to operate independently with some oversight and guidance from our technology teams, right? That's what we set out to do. We did that with Snowflake by design because Snowflake allows us to, you know, separate those, those brands into different accounts. So that was done by design. And then the, the magic, I think, is the Snowflake data sharing where, which allows us to sort of bring data in here once, and then share it with whoever needs it. So think about HBO Max. On HBO Max, You not only have HBO Max content, but content from CNN, from Cartoon Network, from Warner Brothers, right? All the movies, right? So to see how The Batman movie did in theaters and then on streaming, you don't need, you know, Warner brothers doesn't need to ingest the same streaming data. HBO Max does it. HBO Max shares it with Warner brothers, you know, store once, share many times, and everyone works at their own pace. >> So they're building data products. Those data products are discoverable APIs, I presume, or I guess maybe just, I guess the Snowflake cloud, but very importantly, they're governed. And that's correct, where Elation comes in? >> That's precisely where Elation comes in, is where sort of this central flexible foundation for data governance. You know, you mentioned data mesh. I think what's interesting is that it's really an answer to the bottlenecks created by centralized IT, right? There's this notion of decentralizing that the data engineers and making the data domain owners, the people that know the data the best, have them be in control of publishing the data to the data consumers. There are other popular concepts actually happening right now, as we speak, around modern data stack. Around data fabric that are also in many ways underpinned by this notion of decentralization, right? These are concepts that are underpinned by decentralization and as the pendulum swings, sort of between decentralization and centralization, as we go back and forth in the world of IT and data, there are certain constants that need to be centralized over time. And one of those I believe is very much a centralized platform for data governance. And that's certainly, I think where we come in. Would love to hear more about how you use Elation. >> Yeah. So, I mean, elation helps us sort of, as you guys say, sort of, map, the treasure map of the data, right? So for consumers to find where their data is, that's where Elation helps us. It helps us with the data cataloging, you know, storing all the metadata and, you know, users can go in, they can sort of find, you know, the data that they need and they can also find how others are using data. So it's, there's a little bit of a crowdsourcing aspect that Elation helps us to do whereby you know, you can see, okay, my peer in the other group, well, that's how they use this piece of data. So I'm not going to spend hours trying to figure this out. You're going to use the query that they use. So yeah. >> So you have a master catalog, I presume. And then each of the brands has their own sub catalogs, is that correct? >> Well, for the most part, we have that master catalog and then the brands sort of use it, you know, separately themselves. The key here is all that catalog, that catalog isn't maintained by a centralized group as well, right? It's again, maintained by the individual teams and not only in the individual teams, but the folks that are responsible for the data, right? So I talked about the concept of crowdsourcing, whoever sort of puts the data in, has to make sure that they update the catalog and make sure that the definitions are there and everything sort of in line. >> So HBO, CNN, and each have their own, sort of access to their catalog, but they feed into the master catalog. Is that the right way to think about it? >> Yeah. >> Okay. And they have their own virtual data warehouses, right? They have ownership over that? They can spin 'em up, spin 'em down as they see fit? Right? And they're governed. >> They're governed. And what's interesting is it's not just governed, right? Governance is a, is a big word. It's a bit nebulous, but what's really being enabled here is this notion of self-service as well, right? There's two big sort of rockets that need to happen at the same time in any given organization. There's this notion that you want to put trustworthy data in the hands of data consumers, while at the same time mitigating risk. And that's precisely what Elation does. >> So I want to clarify this for the audience. So there's four principles of database. This came after you guys did it. And I wonder how it aligns. Domain ownership, give data, as you were saying to the, to the domain owners who have context, data as product, you guys are building data products, and that creates two problems. How do you give people self-service infrastructure and how do you automate governance? So the first two, great. But then it creates these other problems. Does that align with your philosophy? Where's alignment? What's different? >> Yeah. Data products is exactly where we're going. And that sort of, that domain based design, that's really key as well. In our business, you think about who the customer is, as an example, right? Depending on who you ask, it's going to be, the answer might be different, you know, to the movie business, it's probably going to be the person who watches a movie in a theater. To the streaming business, to HBO Max, it's the streamer, right? To others, someone watching live CNN on their TV, right? There's yet another group. Think about all the franchising we do. So you see Batman action figures and T-shirts, and Warner brothers branded stuff in stores, that's yet another business unit. But at the end of the day, it's not a different person, it's you and me, right? We do all these things. So the domain concept, make sure that you ingest data and you bring data relevant to the context, however, not sort of making it so stringent where it cannot integrate, and then you integrate it at a higher level to create that 360. >> And it's discoverable. So the point is, I don't have to go tap Ash on the shoulder, say, how do I get this data? Is it governed? Do I have access to it? Give me the rules of it. Just, I go grab it, right? And the system computationally automates whether or not I have access to it. And it's, as you say, self-service. >> In this case, exactly right. It enables people to just search for data and know that when they find the data, whether it's trustworthy or not, through trust flags, and the like, it's doing both of those things at the same time. >> How is it an enabler of solving some of the big challenges that the media and entertainment industry is going through? We've seen so much change the last couple of years. The rising consumer expectations aren't going to go back down. They're only going to come up. We want you to serve us up content that's relevant, that's personalized, that makes sense. I'd love to understand from your perspective, Mitesh, from an industry challenges perspective, how does this technology help customers like Warner Brothers Discovery, meet business customers, where they are and reduce the volume on those challenges? >> It's a great question. And as I mentioned earlier, we had five industry competency badges that were awarded to us by Snowflake. And one of those four, Median Telcom. And the reason for that is we're helping media companies understand their audiences better, and ultimately serve up better experiences for their audiences. But we've got Ash right here that can tell us how that's happening in practice. >> Yeah, tell us. >> So I'll share a story. I always like to tell stories, right? Once once upon a time before we had Elation in place, it was like, who you knew was how you got access to the data. So if I knew you and I knew you had access to a certain kind of data and your access to the right kind of data was based on the network you had at the company- >> I had to trust you. >> Yeah. >> I might not want to give up my data. >> That's it. And so that's where Elation sort of helps us democratize it, but, you know, puts the governance and controls, right? There are certain sensitive things as well, such as viewership, such as subscriber accounts, which are very important. So making sure that the right people have access to it, that's the other problem that Elation helps us solve. >> That's precisely part of our integration with Snowflake in particular, being able to define and manage policies within Elation. Saying, you know, certain people should have access to certain rows, doing column level masking. And having those policies actually enforced at the Snowflake data layer is precisely part of our value product. >> And that's automated. >> And all that's automated. Exactly. >> Right. So I don't have to think about it. I don't have to go through the tap on their shoulder. What has been the impact, Ash, on data quality as you've pushed it down into the domains? >> That's a great question. So it has definitely improved, but data quality is a very interesting subject, because back to my example of, you know, when we started doing things, we, you know, the centralized IT team always said, well, it has to be like this, Right? And if it doesn't fit in this, then it's bad quality. Well, sometimes context changes. Businesses change, right? You have to be able to react to it quickly. So making sure that a lot of that quality is managed at the decentralized level, at the place where you have that business context, that ensures you have the most up to date quality. We're talking about media industry changing so quickly. I mean, would we have thought three years ago that people would watch a lot of these major movies on streaming services? But here's the reality, right? You have to react and, you know, having it at that level just helps you react faster. >> So data, if I play that back, data quality is not a static framework. It's flexible based on the business context and the business owners can make those adjustments, cause they own the data. >> That's it. That's exactly it. >> That's awesome. Wow. That's amazing progress that you guys have made. >> In quality, if I could just add, it also just changes depending on where you are in your data pipeline stage, right? Data, quality data observability, this is a very fast evolving space at the moment, and if I look to my left right now, I bet you I can probably see a half-dozen quality observability vendors right now. And so given that and given the fact that Elation still is sort of a central hub to find trustworthy data, we've actually announced an open data quality initiative, allowing for best-of-breed data quality vendors to integrate with the platform. So whoever they are, whatever tool folks want to use, they can use that particular tool of choice. >> And this all runs in the cloud, or is it a hybrid sort of? >> Everything is in the cloud. We're all in the cloud. And you know, again, helps us go faster. >> Let me ask you a question. I could go on forever in this topic. One of the concepts that was put forth is whether it's a Snowflake data warehouse or a data bricks, data lake, or an Oracle data warehouse, they should all be inclusive. They should just be a node on the mesh. Like, wow, that sounds good. But I haven't seen it yet. Right? I'm guessing that Snowflake and Elation enable all the self-serve, all this automated governance, and that including those other items, it's got to be a one-off at this point in time. Do you ever see you expanding that scope or is it better off to just kind of leave it into the, the Snowflake data cloud? >> It's a good question. You know, I feel like where we're at today, especially in terms of sort of technology giving us so many options, I don't think there's a one size fits all. Right? Even though we are very heavily invested in Snowflake and we use Snowflake consistently across the organization, but you could, theoretically, could have an architecture that blends those two, right? Have different types of data platforms like a teradata or an Oracle and sort of bring it all together today. We have the technology, you know, that and all sorts of things that can make sure that you query on different databases. So I don't think the technology is the problem, I think it's the organizational mindset. I think that that's what gets in the way. >> Oh, interesting. So I was going to ask you, will hybrid tables help you solve that problem? And, maybe not, what you're saying, it's the organization that owns the Oracle database saying, Hey, we have our system. It processes, it works, you know, go away. >> Yeah. Well, you know, hybrid tables I think, is a great sort of next step in Snowflake's evolution. I think it's, in my opinion, I, think it's a game changer, but yeah. I mean, they can still exist. You could do hybrid tables right on Snowflake, or you could, you know, you could kind of coexist as well. >> Yeah. But, do you have a thought on this? >> Yeah, I do. I mean, we're always going to live in a time where you've got data distributed in throughout the organization and around the globe. And that could be even if you're all in on Snowflake, you could have data in Snowflake here, you could have data in Snowflake in EMEA and Europe somewhere. It could be anywhere. By the same token you might be using. Every organization is using on-premises systems. They have data, they naturally have data everywhere. And so, you know, this one solution to this is really centralizing, as I mentioned, not just governance, but also metadata about all of the data in your organization so that you can enable people to search and find and discover trustworthy data no matter where it is in your organization. >> Yeah. That's a great point. I mean, if you have the data about the data, then you can, you can treat these independent nodes. That's just that. Right? And maybe there's some advantages of putting it all in the Snowflake cloud, but to your point, organizationally, that's just not feasible. The whole, unfortunately, sorry, Snowflake, all the world's data is not going to go into Snowflake, but they play a key role in accelerating, what I'm hearing, your vision of data mesh. >> Yeah, absolutely. I think going forward in the future, we have to start thinking about data platforms as just one place where you sort of dump all the data. That's where the mesh concept comes in. It is going to be a mesh. It's going to be distributed and organizations have to be okay with that. And they have to embrace the tools. I mean, you know, Facebook developed a tool called Presto many years ago that that helps them solve exactly the same problem. So I think the technology is there. I think the organizational mindset needs to evolve. >> Yeah. Definitely. >> Culture. Culture is one of the hardest things to change. >> Exactly. >> Guys, this was a masterclass in data mesh, I think. Thank you so much for coming on talking. >> We appreciate it. Thank you so much. >> Of course. What Elation is doing with Snowflake and with Warner Brothers Discovery, Keep that content coming. I got a lot of stuff I got to catch up on watching. >> Sounds good. Thank you for having us. >> Thanks guys. >> Thanks, you guys. >> For Dave Vellante, I'm Lisa Martin. You're watching theCUBE live from Snowflake Summit '22. We'll be back after a short break. (upbeat music)
SUMMARY :
session coming for you next. and Ash Naseer great, to have you, in the conference center. and now it's great to kind of see the acceleration that you guys have of the year for data And we've also been awarded Why did you decide that you So the idea of a data mesh Or is it really, how deep have you gone the brands to ingest that data separately, terms of the business and make sure that you let allows us to, you know, separate those, guess the Snowflake cloud, of decentralizing that the data engineers the data cataloging, you know, storing all So you have a master that are responsible for the data, right? Is that the right way to think about it? And they're governed. that need to happen at the So the first two, great. the answer might be different, you know, So the point is, It enables people to just search that the media and entertainment And the reason for that is So if I knew you and I knew that the right people have access to it, Saying, you know, certain And all that's automated. I don't have to go through You have to react and, you know, It's flexible based on the That's exactly it. that you guys have made. and given the fact that Elation still And you know, again, helps us go faster. a node on the mesh. We have the technology, you that owns the Oracle database saying, you know, you could have a thought on this? And so, you know, this one solution I mean, if you have the I mean, you know, the hardest things to change. Thank you so much for coming on talking. Thank you so much. of stuff I got to catch up on watching. Thank you for having us. from Snowflake Summit '22.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Vellante | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
CNN | ORGANIZATION | 0.99+ |
HBO | ORGANIZATION | 0.99+ |
Mitesh Shah | PERSON | 0.99+ |
Ash Naseer | PERSON | 0.99+ |
Europe | LOCATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Mitesh | PERSON | 0.99+ |
Elation | ORGANIZATION | 0.99+ |
TNT | ORGANIZATION | 0.99+ |
Warner brothers | ORGANIZATION | 0.99+ |
EMEA | LOCATION | 0.99+ |
second year | QUANTITY | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
2019 | DATE | 0.99+ |
two years | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
Cartoon Network | ORGANIZATION | 0.99+ |
Game of Thrones | TITLE | 0.99+ |
two problems | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
Warner Brothers | ORGANIZATION | 0.99+ |
10th | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
Snowflake Summit '22 | EVENT | 0.99+ |
Warner brothers | ORGANIZATION | 0.99+ |
each | QUANTITY | 0.99+ |
four | QUANTITY | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
Median Telcom | ORGANIZATION | 0.99+ |
20 years later | DATE | 0.98+ |
both | QUANTITY | 0.98+ |
five different industries | QUANTITY | 0.98+ |
10 years ago | DATE | 0.98+ |
30 plus brands | QUANTITY | 0.98+ |
Alation | PERSON | 0.98+ |
four years ago | DATE | 0.98+ |
today | DATE | 0.98+ |
20 plus years ago | DATE | 0.97+ |
Warner Brothers Discovery | ORGANIZATION | 0.97+ |
One | QUANTITY | 0.97+ |
five years ago | DATE | 0.97+ |
Snowflake Summit 2022 | EVENT | 0.97+ |
three years ago | DATE | 0.97+ |
five different ways | QUANTITY | 0.96+ |
earlier this week | DATE | 0.96+ |
Snowflake | TITLE | 0.96+ |
Max | TITLE | 0.96+ |
early last year | DATE | 0.95+ |
about 1900 attendees | QUANTITY | 0.95+ |
Snowflake | EVENT | 0.94+ |
Ash | PERSON | 0.94+ |
three-peat | QUANTITY | 0.94+ |
around 10,000 | QUANTITY | 0.93+ |