Image Title

Search Results for UCLA psych:

Satyen Sangani, Alation | CUBEConversation


 

>> Narrator: From theCUBE studios in Palo Alto, in Boston, connecting with thought leaders all around the world. This is a CUBE Conversation. >> Hey, welcome back everybody Jeff Frick here with theCUBE. We're coming to you today from our Palo Alto studios with theCUBE conversation, talking about data, and we're excited to have our next guest. He's been on a number of times, many times, CUBE alum, really at the forefront of helping companies and customers be more data centric in their activities. So we'd like to welcome onto the show Satyen Sangani. He is the co founder and CEO of Alation. Satyen, great to see you. >> Great to see you, Jeff. It's good to see you again in this new world, a new format. >> It is a new world, a new format, and what's crazy is, in March and April we were talking about this light switch moment, and now we've just turned the calendar to October and it seems like we're going to be doing this thing for a little bit longer. So, it is kind of the new normal, and even I think when it's over, I don't think everything's going to go back to the way it was, so here we are, but you guys have some exciting news to announce, so let's just jump to the news and then we'll get into a little bit more of the nitty gritty. So what do you got coming out today, right? >> Yeah its so. >> What we are announcing today is basically Alation 2020, which is probably one of the biggest releases that I've been with, that we've had since I've been with the company. We with it are releasing three things. So in some sense, there's a lot of simplicity to the release. The first thing that we're releasing is a new experience around what we call the business user experience, which will bring in a whole new set of users into the catalog. The second thing that we're announcing is basically around Alation analytics and the third is around what we would describe as a cloud-native architecture. In total, it brings a fully transformative experience, basically lowering the total cost of getting to a data management experience, lower and data intelligent experience, much lower than previously had been the case. >> And you guys have a really simple mission, right? You're just trying to help your customers be more data, what's the right word? Data centric, use data more often and to help people actually make that decision. And you had an interesting quote in another interview, you talked about trying to be the Yelp for information which is such a nice kind of humanizing way to think about it because data isn't necessarily that way and I think, you mentioned before we turned on the cameras, that for a lot of people, maybe it's just easier to ignore the data. If I can just get the decision through, on a gut and intuition and get onto my next decision. >> Yeah, you know it's funny. I mean, we live in a time where people talk a lot about fake news and alternative facts and our vision is to empower a curious and rational world and I always smile when I say that a little bit, because it's such a crazy vision, right? Like how you get people to be curious and how do you get people to think rationally? But you know, to us, it's about one making the data really accessible, just allowing people to find the data they need when and as they want it. And the second is for people to be able to think scientifically, teaching people to take the facts at their disposal and interpret them correctly. And we think that if those two skills existed, just the ability to find information and interpret it correctly, people can make a lot better decisions. And so the Yelp analogy is a perfect one, because if you think about it, Yelp did that for local businesses, just like Amazon did it for really complicated products on the web and what we're trying to do at Alation is, in some sense very simple, which is to just take information and make it super usable for people who want to use it. >> Great, but I'm sure there's the critics out there, right? Who say, yeah, we've heard this before the promise of BI has been around forever and I think a lot of peoples think it just didn't work whether the data was too hard to get access to, whether it was too hard to manipulate, whether it was too hard to pull insights out, whether there's just too much scrubbing and manipulating. So, what is some of the secret sauce to take? What is a very complex world? And again and you got some very large customers with some giant data sets and to, I don't want to say humanize it, but kind of humanize it and make it easier, more accessible for that business analyst not just generally, but more specifically when I need it to make a decision. >> Yeah I mean, it's so funny because, making something, data is like a lot of software death by 1000 cuts. I mean you look at something from the outside and it looks really, really, really simple, but then you kind of dwell into any problem and that can be CRM something like Salesforce, or it can be something like service now with ITSM, but these are all really, really complicated spaces and getting into the depths and the detail of it is really hard. And data is really no different, like data is just the sort of exhaust from all of those different systems that exist inside of your company. So the detail around the data in your company is exhaustingly minute. And so, how do you make something like that simple? I think really the biggest challenge there is progressively revealing complexity, right? Giving people the right amount of information at the right amount of time. So, one of the really clever things that we do in this business user experience is we allow people to search for and receive the information that's most relevant to them. And we determined that relevance based upon the other people in the enterprise that happen to be using that data. And we know what other people are using in that company, because we look at the logs to understand which data sources are used most often, and which reports are used most often. So right after that, when you get something, you just see the name of the report and it could be around the revenues of a certain product line. But the first thing that you see is who else uses it. And that's something that people can identify with, you may not necessarily know what the algorithm was or what the formula might be, how the business glossary term relates to some data model or data artifact, but you know the person and if you know the person, then you can trust the information. And so, a lot of what we do is spend time on design to think about what is it that a person expects to see and how do they verify what's true. And that's what helps us really understand what to serve up to somebody so that they can navigate this really complicated, relevant data. >> That's awesome, cause there's really a signal to noise problem, right? And I think I've heard you speak before. >> Yeah >> And of course this is not new information, right? There's just so much data, right? The increasing proliferation of data. And it's not that there's that much more data, we're just capturing a lot more of it. So your signal to noise problem just gets worse and worse and worse. And so what you're talking about is really kind of helping filter that down to get through a lot of that, a lot of that noise, so that you can find the piece of information within the giant haystack. That is what you're looking for at this particular time in this particular moment. >> Yeah and it's a really tough problem. I mean, one of the things that, it's true that we've been talking about this problem for such a long time. And in some instance, if we're lucky, we're going to be talking about it for a lot longer because it used to be that the problem was, back when I was growing up, you were doing research on a topic and you'd go to the card catalog and you'd go to the Dewey decimal system. And in your elementary school or high school library, you might be lucky if you were to find, one, two or three books that map to the topic that you were looking for. Now, you go to Google and you find 10,000 books. Now you go inside of an enterprise and you find 4,000 relational database tables and 200 reports about an artifact that you happened to be looking for. And so really the problem is what do I trust? And what's correct and getting to that level of accuracy around information, if there's so much information out there is really the big problem of our time and I think, for me it's a real privilege to be able to work on it because I think if we can teach people to use information better and better then they can make better decisions and that can help the world in so many different. >> Right, right, my other favorite example that everybody knows is photographs, right? Back when you only got 24 and a roll and cost you six bucks to develop it. Those were pretty special and now you go buy a fancy camera. You can shoot 11, 11 frames a second. You go out and shoot the kids at the soccer game. You come home with 5,000 photos. How do you find the good photo? It's a real, >> Yeah. >> It's a real problem. If you've ever faced something like that, it's kind of a splash of water in the face. Like where do I even begin? But the other piece that you talk about a lot, which is slightly different but related is context, and in favorite concept, it's like 55, right? That's a number, but if you don't have any context for that number, is it a temperature? Is it cold inside the building? Is it a speed? Is it too slow on i5? Or is it fast because I'm on a bicycle going down a Hill and without context data is just, it's just a number. It doesn't mean anything. So you guys really by adding this metadata around the data are adding a lot more contextual information to help figure out kind of what that signal is from the noise. >> Yap, you'll get facts from anywhere, right? Like, you're going to have a Hitchcock, you've got a 55 or 42, and you can figure out like what the meaning of the universe is and apparently the answer is 42 and what does that mean? It might mean a million different things and that, to me, that context is the difference between, suspecting and knowing. And there's the difference between having confidence and basically guessing. And I think to the extent that we can provide more of that over time, that's, what's going to make us, an ever more valuable partner to the customers that we satisfy today. >> Right, well, I do know why 42 is always the answer 'cause that's Ronnie Lot and that's always the answer. So, that one I know that's an easy one. (both chuckles) But it is really interesting and then you guys just came out. I heard Aaron Kalb on, one of your co-founders the other day and we talked about this new report that you guys have sponsored the Data Culture Report and really, putting some granularity on a Data Culture Index and I thought it was pretty interesting and I'm excited that you guys are going to be doing this, longitudinally because whether you do or do not necessarily agree with the method, it does give you a number, It does give you a score, It's a relatively simple formula. And at least you can compare yourself over time to see how you're tracking. I wonder if you could share, I mean, the thing that jumps out right off the top of that report is something we were talking about before we turned the cameras on that, people's perception of where they are on this path doesn't necessarily map out when you go bottoms up and add the score versus top down when I'm just making an assessment. >> Yeah, it's funny, it's kind of the equivalent of everybody thinks they're an above average driver or everybody thinks they're above average in terms of obviously intelligence. And obviously that mathematically is not possible or true, but I think in the world of data management, we all talk about data, we all talk about how important it is to use data. And if you're a data management professional, you want people in your company to use more data. But ironically, the discipline of data management doesn't actually use a lot of data itself. It tends to be a very slow methodical process driven gut oriented process to develop things like, what data models exist and how do I use my infrastructure and where do I put my data and which data quality is best? Like all of those things tend to be, somewhat heuristic driven or gut driven and they don't have to be and a big part of our release actually is around this product called Alation Analytics. And what we do with that product is really quite interesting. We start measuring elements of how your organization uses data by team, by data source, by use case. And then we give you transparency into what's going on with the data inside of your landscape and eco-system. So you can start to actually score yourself both internally, but also as we reveal in our customer success methodology against other customers, to understand what it is that you're doing well and what it is that you're doing badly. And so you don't need necessarily to have a ton of guts instinct anymore. You can look at the data of yourselves and others to figure out where you need to improve. And so that's a pretty exciting thing and I think this notion that says, look, you think you're good, but are you really good? I mean, that's fundamental to improvement in business process and improvement in data management, improvement in data culture fundamentally for every company that we work with. >> Right, right and if you don't know, there's a problem, and if you're not measuring it, then there's no way to improve on it, right? Cause you can't, you don't know, what you're measuring is. >> Right. >> But I'm curious of the three buckets that you guys measured. So you measured data search and discovery was bucket number one, data literacy, you know what you do once you find it and then data governance in terms of managing. It feels like that the search and discovery, which is, it sounds like what you're primarily focused on is the biggest gap because you can't get to those other two buckets unless you can find and understand what you're looking for. So is that JIve or is that really not problem, is it more than manipulation of the data once you get it? >> Yeah, I mean we focus really. We focus on all three and I think that, certainly it's the case that it's a virtuous cycle. So if you think about kind of search and discovery of data, if you have very little context, then it's really hard to guide people to the right bit of information. But if I know for example that a certain data is used by a certain team and then a new member of that team comes on board. Then I can go ahead and serve them with exactly that bit of data, because I know that the human relationships are quite tight in the context graph on the back end. And so that comes from basically building more context over time. Now that context can come from a stewardship process implemented by a data governance framework. It can come from, building better data literacy through having more analytics. But however, that context is built and revealed, there tends to be a virtuous cycle, which is you get more, people searching for data. Then once they've searched for the data, you know how to necessarily build up the right context. And that's generally done through data governance and data stewardship. And then once that happens, you're building literacy in the organization. So people then know what data to search for. So that tends to be a cycle. Now, often people don't recognize that cycle. And so they focus on one thing thinking that you can do one to the exclusion of the others, but of course that's not the case. You have to do all three. >> Great and I would presume you're using some good machine, Machine Learning and Artificial Intelligence in that process to continue to improve it over time as you get more data, the metadata around the data in terms of the usage and I think, again I saw in another interview there talking about, where should people invest? What is the good data? What's the crap data? what's the stuff we shouldn't use 'cause nobody ever uses it or what's the stuff, maybe we need to look and decide whether we want to keep it or not versus, the stuff that's guiding a lot of decisions with Bob, Mary and Joe, that seems to be a good investment. So, it's a great application of applied AI Machine Learning to a very specific process to again get you in this virtuous cycle. That sounds awesome. >> Yeah, I know it is and it's really helpful to, I mean, it's really helpful to think about this, I mean the problem, one of the biggest problems with data is that it's so abstract, but it's really helpful to think about it in just terms of use cases. Like if I'm using a customer dataset and I want to join that with a transaction dataset, just knowing which other transaction datasets people joined with that customer dataset can be super helpful. If I'm an analyst coming in to try to answer a question or ask a question, and so context can come in different ways, just in the same way that Amazon, their people who bought this product also bought this product. You can have all of the same analogies exist. People who use this product also use that product. And so being able to generate all that intelligence from the back end to serve up simple seeming experience on the front end is the fun part of the problem. >> Well I'm just curious, cause there's so many pieces of this thing going on. What's kind of the, aha moment when you're in with a new customer and you finish the install and you've done all the crawling and where all the datasets are, and you've got some baseline information about who's using what I mean, what is kind of the, Oh, my goodness. When they see this thing suddenly delivering results that they've never had at their fingertips before. >> Yeah, it's so funny 'cause you can show Alation as a demo and you can show it to people with data sets that are fake. And so we have this like medical provider data set that, we've got in there and we've got a whole bunch of other data sets that are in there and people look at it and interestingly enough, a lot of time, they're like, Oh yeah, I can kind of see it work and I can kind of like understand that. And then you turn it on against their own data. The data they have been using every single day and literally their faces change. They look at the data and they say, Oh my God, like, this is a dataset that Steven uses, I didn't even know that Steven thought that this data existed and, Oh my God, like people are using this data in this particular way. They shouldn't be using that data at all, Like I thought I deprecated that dataset two years ago. And so people have all of these interesting insights and it's interesting how much more real it gets when you turn it on against the company's systems themselves. And so that's been a really fun thing that I've just seen over and over again, over the course of multiple years where people just turn on the cup, they turn on the product and all of a sudden it just changes their view of how they've been doing it all along. And that's been really fun and exciting. >> That's great yeah, cause it means something to them, right? It's not numbers on a page, It's actually, it's people, it's customers, it's relationships, It's a lot of things. That's a great story and I'm curious too, in that process, is it more often that they just didn't know that there were these other buckets of reports and other buckets of data or was it more that they just didn't have access to it? Or if they did, they didn't really know how to manipulate it or to integrate it into their own workflow. >> Yeah, It's kind of funny and it's somewhat role dependent, but it's kind of all of the above. So, if you think about it, if you're a data management professional, often you kind of know what data sources might exist in the enterprise, but you don't necessarily know how people are using the data. And so you look at data and you're like, Oh my God, I can't believe this team is using this data for this particular purpose. They shouldn't be doing that. They should be using this other data set. I deprecated that data set like two years ago. And then sometimes if you're a data scientist, you're you find, Oh my gosh, there's this new database that I otherwise didn't realize existed. And so now I can use that data and I can process that for building some new machine learning algorithms. In one case we've had a customer where they had the same data set procured five different times. So it was a pure, it was a data set that cost multiple hundreds of thousands of dollars. They were spending $2 million overall on a data set where they could have been spending literally one fifth of that amount. And then you had a sort of another case finally, where you're basically just looking at it and saying, Hey, I remember that data set. I knew I had that dataset, but I just don't remember exactly where it was. Where did I put that report? And so it's exactly the same way that you would use Google. Sometimes you use it for knowledge discovery, but sometimes you also use it for just remembering the thing you forgot. >> Right but, but the thing, like I remember when people were trying to put Google search in that companies just to find records not necessarily to support data efforts and the knock was always, you didn't have enough traffic to drive the algorithm to really have effective search say across a large enterprise that has a lot of records, but not necessarily a lot of activity. So, that's a similar type of problem that you must have. So is it really extracting that extra context of other people's usage that helps you get around kind of that you just don't have a big numbers? >> Yeah, I mean that kind of is fundamentally the special sauce. I mean, I think a lot of data management has been this sort of manual brute force effort where I get a whole bunch of consultants or a whole bunch of people in the room and we do this big documentation session. And all of a sudden we hope that we've kind of, painted the golden gate bridge is at work. But, knowing that three to six months later, you're going to have to go back and repaint the golden gate bridge overall all over again, if not immediately, depending on the size and scale of your company. The one thing that Google did to sort of crawl the web was to really understand, Oh, if a certain webpage was linked to super often, then that web page is probably a really useful webpage. And when we crawled the logs, we basically do the exact same thing. And that's really informed getting a really, really specific day one view of your data without having to have a whole bunch of manual effort. And that's been really just dramatical. I mean, it's been, it's allowed people to really see their data very quickly and new different ways and I think a big part of this is just friction reduction, right? We'd all love to have an organized data world. We'd love to organize all the information in a company, but for anybody has an email inbox, organizing your own inbox, let alone organizing every database in your company just seems like a specificity in effort. And so being able to focus people on what's the most important thing has been the most important thing. And that's kind of why we've been so successful. >> I love it and I love just kind of the human factors kind of overlay, that you've done to add the metadata with the knowledge of who is accessing these things and how are they accessing it. And the other thing I think is so important Satyen is, we talk about innovation all the time. Everybody wants more innovation and they've got DevOps so they can get software out faster, et cetera, et cetera. But, I fundamentally believe in my heart of hearts that it's much more foundational than that, right? That if you just get more people, access to more information and then the ability to manipulate and clean knowledge out of that information and then actually take action and have the power and the authority to take action. And you have that across, everyone in the company or an increasing number of people in the company. Now suddenly you're leveraging all those brains, right? You're leveraging all that insight. You're leveraging all that kind of First Line experience to drive kind of a DevOps type of innovation with each individual person, as opposed to, kind of classic waterfall with the Chief Innovation Officer, Doing PowerPoints in his office, on his own time. And then coming down from the mountain and handing it out to everybody to go build. So it's a really a kind of paradox that by adding more human factors to the data, you're actually making it so much more usable and so much more accessible and ultimately more valuable. >> Yeah, it's funny we, there's this new term of art called data intelligence. And it's interesting because there's lots of people who are trying to define it and there's this idea and I think IDC, IDC has got a definition and you can go look it up, but if you think about the core word of intelligence, it basically DevOps down to the ability to acquire information or skills, right? And so if you then apply that to companies and data, data intelligence then stands to reason. It's sort of the ability for an organization to acquire, information or skills leveraging their data. And that's not just for the company, but it's for every individual inside of that company. And we talk a lot about how much change is going on in the world with COVID and with wildfires here in California. And then obviously with the elections and then with new regulations and with preferences, cause now that COVID happened everybody's at home. So what products and what services do you have to deliver to them? And all of this change is, basically what every company has to keep up with to survive, right? If capitalism is creative destruction, the world's getting destroyed, like, unfortunately more often than we'd like it to be,. >> Right. >> And so then you're say there going, Oh my God, how do I deal with all of this? And it used to be the case that you could just build a company off of being really good at one thing. Like you could just be the best like logistics delivery company, but that was great yesterday when you were delivering to restaurants. But since there are no restaurants in business, you would just have to change your entire business model and be really good at delivering to homes. And how do you go do that? Well, the only way to really go do that, is to be really, really intelligent throughout your entire company. And that's a function of data. That's a function of your ability to adapt to a world around you. And that's not just some CEO cause literally by the time it gets to the CEO, it's probably too late. Innovations got to be occurring on the ground floor. And people have got to repackage things really quickly. >> I love it, I love it. And I love the other human factor that we talked about earlier. It's just, people are curious, right? So if you can make it easy for them to fulfill their curiosity, they're going to naturally seek out the information and use it versus if you make it painful, like a no fun lesson, then people's eyes roll in and they don't pay attention. So I think that it's such an insightful way to address the problem and really the opportunity and the other piece I think that's so different when you're going down the card catalog analogy earlier, right? Is there was a day when all the information was in that library. And if you went to the UCLA psych library, every single reference that you could ever find is in that library, I know I've been there, It was awesome, but that's not the way anymore, right? You can't have all the information and it's pulling your own information along with public information and as much information as you can. where you start to build that competitive advantage. So I think it's a really great way to kind of frame this thing where information in and of itself is really not that valuable. It's about the context, the usability, the speed of these ability and that democratization is where you really start to get these force multipliers and using data as opposed to just talking about data. >> Yeah and I think that that's the big insight, right? Like if you're a CEO and you're kind of looking at your Chief Data Officer or Chief Data and Analytics Officer. The real question that you're trying to ask yourself is, how often do my people use data? How measurable is it? Like how much do people, what is the level at which people are making decisions leveraging data and that's something that, you can talk about in a board room and you can talk about in a management meeting, but that's not where the question gets answered. The question gets really answered in the actual behaviors of individuals. And the only way to answer that question, if you're a Chief Analytics Officer or somebody who's responsible for data usage within the company is by measuring it and managing it and training it and making sure it's a part of every process and every decision by building habit and building those habits are just super hard. And that's, I think the thing that we've chosen to be sort of the best in the world at, and it's really hard. I mean, we're still learning about how to do it, but, from our customers and then taking that knowledge and kind of learning about it over time. >> Right, well, that's fantastic. And if it wasn't hard, it wouldn't be valuable. So those are always the best problems to solve. So Satyen, really enjoyed the conversation. Congratulations to you and the team on the new release. I'm sure there's lots of sweat, blood and tears that went into that effort. So congrats on getting that out and really great to catch up. Look forward to our next catch up. >> You too Jeff, It's been great to talk. Thank you so much. >> All right, take care. All righty Satyen and I'm Jeff, you're watching theCUBE. We'll see you next time. Thanks for watching. (ethereal music)

Published Date : Oct 6 2020

SUMMARY :

leaders all around the world. We're coming to you today It's good to see you again in the calendar to October and the third is around what we would and I think, you mentioned And the second is for people to be able And again and you got and if you know the person, you speak before. so that you can find and that can help the and cost you six bucks to develop it. that signal is from the noise. and you can figure out like and I'm excited that you guys and they don't have to be and if you're not measuring it, of the data once you get it? So that tends to be a cycle. in that process to continue from the back end to serve and you finish the install and you can show it to is it more often that they just the thing you forgot. get around kind of that you and repaint the golden gate and handing it out to and you can go look it up, and be really good at delivering to homes. and really the opportunity and you can talk about and really great to catch up. Thank you so much. We'll see you next time.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Jeff FrickPERSON

0.99+

SatyenPERSON

0.99+

JeffPERSON

0.99+

AmazonORGANIZATION

0.99+

11QUANTITY

0.99+

Palo AltoLOCATION

0.99+

$2 millionQUANTITY

0.99+

oneQUANTITY

0.99+

Ronnie LotPERSON

0.99+

StevenPERSON

0.99+

OctoberDATE

0.99+

24QUANTITY

0.99+

200 reportsQUANTITY

0.99+

GoogleORGANIZATION

0.99+

Aaron KalbPERSON

0.99+

YelpORGANIZATION

0.99+

CaliforniaLOCATION

0.99+

six bucksQUANTITY

0.99+

MarchDATE

0.99+

10,000 booksQUANTITY

0.99+

twoQUANTITY

0.99+

thirdQUANTITY

0.99+

Satyen SanganiPERSON

0.99+

BostonLOCATION

0.99+

AprilDATE

0.99+

second thingQUANTITY

0.99+

AlationORGANIZATION

0.99+

bothQUANTITY

0.99+

two skillsQUANTITY

0.99+

BobPERSON

0.99+

theCUBEORGANIZATION

0.98+

two years agoDATE

0.98+

todayDATE

0.98+

secondQUANTITY

0.98+

hundreds of thousands of dollarsQUANTITY

0.98+

yesterdayDATE

0.98+

two bucketsQUANTITY

0.98+

Data Culture ReportTITLE

0.98+

1000 cutsQUANTITY

0.98+

JoePERSON

0.97+

AlationPERSON

0.97+

5,000 photosQUANTITY

0.97+

first thingQUANTITY

0.97+

five different timesQUANTITY

0.97+

55QUANTITY

0.97+

three bucketsQUANTITY

0.97+

one thingQUANTITY

0.97+

threeDATE

0.96+

one caseQUANTITY

0.96+

Alation 2020TITLE

0.95+

six months laterDATE

0.94+

each individual personQUANTITY

0.94+

CUBEORGANIZATION

0.93+

COVIDEVENT

0.92+

three booksQUANTITY

0.91+

MaryPERSON

0.91+

one fifthQUANTITY

0.91+

threeQUANTITY

0.91+

IDCORGANIZATION

0.88+

Alation AnalyticsORGANIZATION

0.88+

4,000 relational databaseQUANTITY

0.86+

First LineQUANTITY

0.85+

42QUANTITY

0.85+

HitchcockPERSON

0.84+

three thingsQUANTITY

0.82+

11 frames a secondQUANTITY

0.82+

42OTHER

0.81+

UCLA psychORGANIZATION

0.75+