Image Title

Search Results for Rockette:

Venkat Venkataramani, Rockset | AWS re:Invent 2022 - Global Startup Program


 

>>And good afternoon. Welcome back here on the Cub as to continue our coverage at aws Reinvent 22, win the Venetian here in Las Vegas, day two, it's Wednesday. Thanks. Still rolling. Quite a along. We have another segment for you as part of the Global Startup program, which is under the AWS Startup Showcase. I'm joined now by Vink at Viera, who is the CEO and co-founder of R Set. And good to see you, >>Sir. Thanks for having me here. Yeah, >>No, a real pleasure. Looking forward to it. So first off, for some of, for yours who might not be familiar with Roxette, I know you've been on the cube a little bit, so you're, you're an alum, but, but why don't you set the stage a little bit for Rock set and you know, where you're engaged with in terms of, with aws? >>Definitely. Rock Set is a realtime analytics database that is built for the cloud. You know, we make realtime applications possible in the cloud. You know, realtime applications need high concurrency, low latency query processing data needs to be fresh, your analytic needs to be fast. And, you know, we built on aws and that's why we are here. We are very, very proud partners of aws. We are in the AWS Accelerate program, and also we are in the startup program of aws. We are strategic ISV partner. And so yeah, we make real time analytics possible without all the cost and complexity barriers that are usually associated with it. And very, very happy to be part of this movement from batch to real time that is happening in the world. >>Right. Which is certainly an exciting trend. Right. I know great news for you, you made news yesterday, had an announcement involved with the intel with aws, who wants to share some of that >>With us too? Definitely. So, you know, one, one question that I always ask people is like, you know, if you go perspective that I share is like, if you go ask a hundred people, do you want fast analytics on fresh data or slow analytics on stale data? You know, a hundred out of a hundred would say fast and fresh, right? Sure. So then the question is, why hasn't this happened already? Why is this still a new trend that is emerging as opposed to something that everybody's taking for granted? It really comes down to compute efficiency, right? I think, you know, at the end of the day, real time analytics was always in using, you know, technologies that are, let's say 10 years ago using let's say processors that were available 10 years ago to, you know, three cloud, you know, days. There was a lot of complexity barriers associated with realtime analytics and also a lot of cost and, and performance barriers associated with it. >>And so Rox said from the, you know, from the very beginning, has been obsessing about building the most compute efficient realtime database in the world. And, you know, AWS on one hand, you know, allows us to make a consumption based pricing model. So you only pay for what you use. Sure. And that shatters all the cost barriers. But in terms of computer efficiency, what we announced yesterday is the Intel's third generation Zon scalable processors, it's code named Intel Ice Lake. When we port it over Rock said to that architecture, taking advantage of some of the instructions sets that Intel has, we got an 84% performance boost, 84, 84, 84. >>It's, it's incredible, right? >>It's, it's an incredible charts, it's an incredible milestone. It reduces the barrier even more in terms of cost and, you know, and, and pushes the efficiency and sets a, a really new record for how efficient realtime, you know, data processing can be in the cloud. And, and it's very, very exciting news. And so we used to benchmark ourselves against some of our other, you know, realtime, you know, did up providers and we were already faster and now we've set a, a much, much higher bar for other people to follow. >>Yep. And, and so what is, or what was it about real time that, that, you know, was such a barrier because, and now you've got the speed of, of course, obviously, and maybe that's what it was, but I think cost is probably part of that too, right? That's all part of that equation. I mean, real time, so elusive. >>Yeah. So real time has this inherent pattern that your data never stops coming. And when your data never stops coming, and you can now actually do analytics on that. Now, initially people start with saying, oh, I just want a real time dashboard. And then very quickly they realize, well, the dashboard is actually in real time. I'm not gonna be staring at the 24 7. Can you tap on my shoulder when something is off, something needs to be looked at. So in which case you're constantly also asking the question, is everything okay? Is everything all right? Do I need to, is is that something that I need to be, you know, double clicking on and, and following up on? So essentially very quickly in real time analytics, what happens is your queries never stop. The questions that you're asking on your data never stops. And it's often a program asking the question to detect anomalies and things like that. >>And your data never stops coming. And so compute is running 24 7. If you look at traditional data warehouses and data lakes, they're not really optimized for these kinds of workloads. They're optimized to store massive volumes of data and in a storage efficient format. And when an analyst comes and asks a question to generate a report, you can spin up a whole bunch of compute, generate the report and tear it all down when you're done. Well, that is not compute running 24 7 to continuously, you know, you know, keep ingesting the data or continuously keep answering questions. So the compute efficiency that is needed is, is much, much, much higher. Right? And that is why, you know, Rox was born. So from the very beginning, we're only built, you know, for these use cases, we have a, an extremely powerful SQL engine that can give you full feature SQL analytics in a very, very compute efficient way in the cloud. >>Right. So, so let's talk about the leap that you've made, say in the last two years and, and, and what's been the spur of that? What has been allowed you to, to create this, you know, obviously a, a different kind of an array for your customers from which to choose, but, but what's been the spark you think >>We touched upon this a little earlier, right? This spark is really, you know, the world going from batch to real time. So if you look at mainstream adoption of technologies like Apache, Kafka and Confluent doing a really good job at that. In, in, in growing that community and, and use cases, now businesses are now acquiring business data, really important business data in real time. Now they want to operationalize it, right? So, you know, extract based static reports and bi you know, business intelligence is getting replaced in all modern enterprises with what we call operational intelligence, right? Don't tell me what happened last quarter and how to plan this quarter better. Tell me what's happening today, what's happening right now. And it's, it's your business operations using data to make day to day decisions better that either grows your top line, compresses your bottom line, eliminates risk that are inherently creeping up in your business. >>Sure. You know, eliminate potential churn from a customer or fraud, you know, deduction and, and getting on top of, you know, that, you know, a minute into this, into, into an outage as opposed to an hour into the outage. Right? And so essentially I think businesses are now realizing that operational intelligence and operational analytics really, you know, allows them to leverage data and especially real time data to make their, you know, to grow their businesses faster and more efficiently. And especially in this kind of macro environment that is, you know, more important to have better unit economics in your business than ever before. Sure. And so that is really, I think that is the real market movement happening. And, and we are here to just serve that market. We are making it much, much easier for companies that have already adopted, you know, streaming technologies like Kafka and, and, and knows Canis MSK and all these technologies. Now businesses are acquiring these data in real time now. They can also get realtime analytics on the other end of it. Sure. >>You know, you just touched on this and, and I'd like to hear your thoughts about this, about, about the economic environment because it does drive decisions, right? And it does motivate people to look for efficiencies and maybe costs, you know, right. Cutting costs. What are you seeing right now in terms of that, that kind of looming influence, right? That the economy can have in terms of driving decisions about where investments are being made and what expectations are in terms of delivering value, more value for the buck? >>Exactly. I think we see across the board, all of our customers come back and tell us, we don't want to manage data infrastructure and we don't want to do kind of DIY open source clusters. We don't wanna manage and scale and build giant data ops and DevOps teams to manage that, because that is not really, you know, in their business. You know, we have car rental companies want to be better at car rentals, we want airlines to be a better airline, and they don't, don't want their, you know, a massive investment in DevOps and data ops, which is not really their core business. And they really want to leverage, you know, you know, fully managed and, you know, cloud offerings like Rock said, you know, built on aws, massively scalable in the cloud with zero operational overhead, very, very easy to get started and scale. >>And so that completely removes all the operational overhead. And so they can invest the resources they have, the manpower, they have, the calories that they have on actually growing their businesses because that is what really gonna allow them to have better unit economics, right? So everybody that is on my payroll is helping me grow my top line or shrink my bottom line, eliminate risk in my business and, and, and, and churn and, and fraud and other, and eliminate all those risks that are inherent in my business. So, so that is where I think a lot of the investments going. So gone are the days where, you know, you're gonna have these in like five to 10% team managing a very hard to operate, you know, open source data management clusters on EC two nodes in, in AWS and, and kind of DIYing it their way because those 10 people, you know, if all they do is just operational maintenance of infrastructure, which is a means to an end, you're way better off, you know, using a cloud, you know, a bond in the cloud built for the cloud solution like rock and eliminate all that cost and, and replace that with an operationally much, much simpler, you know, system to op, you know, to to work with such as, such as rock. >>So that is really the big trend that we are seeing why, you know, not only real time is going more and more mainstream cloud native solutions or the real future even when it comes to real time because the complexity barrier needs to be shattered and only cloud native solutions can actually, >>You get the two Cs cost and complexity, right. That you, you need to address. Exactly. Yeah, for sure. You know, what is it about building trust with your, with your clients, with your partners? Because you, you're talking about this cloud environment that, that everyone is talking about, right? Not everyone's made that commitment. There are still some foot draggers out there. How are you going about establishing confidence and establishing trust and, and, and providing them with really concrete examples of the values and the benefits that you can provide, you know, with, with these opportunities? >>So, you know, I grew up, so there's a few ways to to, to answer this question. I'll, I'll, I'll come, I'll cover all the angles. So in, in order to establish trust, you have to create value. They, you know, your customer has to see that with you. They were able to solve the problem faster, better, cheaper, and they're able to, you know, have a, the business impact they were looking for, which is why they started the project in the first place. And so establishing that and proving that, I think there's no equivalence to that. And, you know, I grew up at, at, you know, at Facebook back in the day, you know, I was managing online data infrastructure, okay. For Facebook from 2007 and 2015. And internally we always had this kind of culture of all the product teams building on top of the infrastructure that my team was responsible for. >>And so they were not ever, there was never a, a customer vendor relationship internally within Facebook that we're all like, we're all part of the same team. We're partnering here to have you, you know, to help you have a successful product launch. There's a very similar DNA that, that exists in Rock said, when our customers work with us and they come to us and we are there to make them successful, our consumption based pricing model also forces us to say they're not gonna really use Rock said and consume more. I mean, we don't make money until they consume, right? And so their success is very much integral part of our, our success. And so that I think is one really important angle on, you know, give us a shot, come and do an evaluation, and we will work with you to build the most efficient way to solve your problem. >>And then when you succeed, we succeed. So that I think is a very important aspect. The second one is AWS partnership. You know, we are an ISV partner, you know, AWS a lot of the time. That really helps us establish trust. And a lot of the time, one of the, the, the people that they look up to, when a customer comes in saying, Hey, what is, who is Rock? Said? You know, who are your friends? Yeah. Who are your friends? And then, you know, and then the AWS will go like, oh, you know, we'll tell you, you know, all these other successful case studies that R has, you know, you know, built up on, you know, the world's largest insurance provider, Europe's largest insurance provider. We have customers like, you know, JetBlue Airlines to Klarna, which is a big bator company. And so, so all these case studies help and, and, and, and platform and partners like AWS helps us, helps you amplify that, that, you know, and, and, and, and, and give more credibility. And last but not least, compliance matters. You know, being Soto type two compliant is, is a really important part of establishing trust. We are hip hop compliant now so that, you know, we can, you know, pi I phi data handling that. And so I think that will continue to be a part, a big part of our focus in improving the security, you know, functionality and, and capabilities that R set has in the cloud, and also compliance and, and the set of com, you know, you know, standards that we are gonna be compliant against. >>Well, I'm glad you hit on the AWS too, cause I did wanna bring that up. I, I appreciate that and I know they appreciate the relationship as well. Thanks for the time here. It's been a pleasure. Awesome. Learning about Rockette and what you're up to. Thank you. >>You bet. >>It's a pleasure. Thank you. Vi ka. All right. You are watching the cube coverage here at AWS Reinvent 22. And on the cube, of course, the leader, the leader in high tech coverage.

Published Date : Nov 30 2022

SUMMARY :

We have another segment for you as part of the Global Startup program, which is Yeah, but why don't you set the stage a little bit for Rock set and you know, where you're engaged with in terms of, And, you know, I know great news for you, you made news yesterday, you know, three cloud, you know, days. And so Rox said from the, you know, from the very beginning, has been obsessing about building benchmark ourselves against some of our other, you know, realtime, you know, did up providers That's all part of that equation. you know, double clicking on and, and following up on? And that is why, you know, to create this, you know, obviously a, a different kind of an array for your customers from which This spark is really, you know, the world going from batch you know, deduction and, and getting on top of, you know, that, you know, a minute into this, maybe costs, you know, right. And they really want to leverage, you know, you know, and, and replace that with an operationally much, much simpler, you know, system to op, that you can provide, you know, with, with these opportunities? at, you know, at Facebook back in the day, you know, I was managing online data infrastructure, you know, give us a shot, come and do an evaluation, and we will work with you to build the most efficient way and the set of com, you know, you know, standards that we are gonna be compliant against. Well, I'm glad you hit on the AWS too, cause I did wanna bring that up. And on the cube, of course, the leader, the leader in high

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
AWSORGANIZATION

0.99+

2007DATE

0.99+

2015DATE

0.99+

84%QUANTITY

0.99+

Venkat VenkataramaniPERSON

0.99+

Las VegasLOCATION

0.99+

FacebookORGANIZATION

0.99+

84QUANTITY

0.99+

WednesdayDATE

0.99+

last quarterDATE

0.99+

10 years agoDATE

0.99+

VinkPERSON

0.99+

JetBlue AirlinesORGANIZATION

0.99+

10 peopleQUANTITY

0.99+

yesterdayDATE

0.99+

fiveQUANTITY

0.99+

todayDATE

0.99+

Ice LakeCOMMERCIAL_ITEM

0.99+

EuropeLOCATION

0.99+

IntelORGANIZATION

0.99+

oneQUANTITY

0.98+

firstQUANTITY

0.98+

10%QUANTITY

0.98+

ApacheORGANIZATION

0.98+

awsORGANIZATION

0.98+

twoQUANTITY

0.98+

Vi kaPERSON

0.98+

RockPERSON

0.97+

RoxPERSON

0.97+

ConfluentORGANIZATION

0.97+

an hourQUANTITY

0.96+

R SetORGANIZATION

0.96+

one questionQUANTITY

0.96+

KlarnaORGANIZATION

0.95+

24 7QUANTITY

0.95+

RocksetORGANIZATION

0.94+

this quarterDATE

0.93+

day twoQUANTITY

0.93+

24 7OTHER

0.92+

SQLTITLE

0.91+

intelORGANIZATION

0.91+

second oneQUANTITY

0.9+

RockORGANIZATION

0.89+

DevOpsTITLE

0.88+

VieraORGANIZATION

0.87+

Startup ShowcaseEVENT

0.85+

zeroQUANTITY

0.85+

KafkaORGANIZATION

0.84+

a minuteQUANTITY

0.82+

generationCOMMERCIAL_ITEM

0.82+

EC two nodesTITLE

0.78+

a hundred peopleQUANTITY

0.77+

Reinvent 22EVENT

0.76+

a hundredQUANTITY

0.76+

important angleQUANTITY

0.75+

RocketteTITLE

0.75+

re:Invent 2022 - Global Startup ProgramTITLE

0.74+

KafkaTITLE

0.73+

Reinvent 22TITLE

0.68+

thirdQUANTITY

0.68+

ZonCOMMERCIAL_ITEM

0.66+

last two yearsDATE

0.65+

RoxettePERSON

0.65+

rockORGANIZATION

0.64+

SotoORGANIZATION

0.53+

Canis MSKORGANIZATION

0.52+