Image Title

Search Results for thirdproject:

Dr. Dan Duffy and Dr. Bill Putman | SuperComputing 22


 

>>Hello >>Everyone and welcome back to Dallas where we're live from, Super computing. My name is Savannah Peterson, joined with my co-host David, and we have a rocket of a show for you this afternoon. The doctors are in the house and we are joined by nasa, ladies and gentlemen. So excited. Please welcome Dr. Dan Duffy and Dr. Bill Putman. Thank you so much for being here, guys. I know this is kind of last minute. How's it to be on the show floor? What's it like being NASA here? >>What's exciting? We haven't, we haven't been here for three years, so this is actually really exciting to come back and see everybody, to see the showroom floor, see the innovations that have happened over the last three years. It's pretty exciting. >>Yeah, it's great. And, and so, because your jobs are so cool, and I don't wanna even remotely give even too little of the picture or, or not do it justice, could you give the audience a little bit of background on what you do as I think you have one of the coolest jobs ever. YouTube bill. >>I, I appreciate that. I, I, I run high Performance Computing Center at NASA Goddard for science. It's high performance information technology. So we do everything from networking to security, to high performance computing, to data sciences, artificial intelligence and machine learning is huge for us now. Yeah, large amounts of data, big data sets, but we also do scientific visualizations and then cloud and commercial cloud computing, as well as on premises cloud computing. And quite frankly, we support a lot of what Bill and his team does. >>Bill, why don't you tell us what your team >>Does? Yeah, so I'm a, I'm an earth scientist. I work as the associate chief at the global modeling assimilation office. And our job is to really, you know, maximize the use of all the observations that NASA takes from space and build that into a coherent, consistent physical system of the earth. Right? And we're focused on utilizing the HC that, that Dan and the folks at the nccs provide to us, to the best of our abilities to integrate those observations, you know, on time scales from hours, days to, to seasonal to to monthly time scales. That's, that's the essence of our focus at the GMA o >>Casual modeling, all of NASA's earth data. That, that in itself as a sentence is pretty wild. I imagine you're dealing with a ton of data. >>Oh, massive amounts of data. Yes, >>Probably, I mean, as much as one probably could, now that I'm thinking about it. I mean, and especially with how far things have to travel. Bill, sticking with you, just to open us up, what technology here excites you the most about the future and that will make your job easier? Let's put it that way. >>To me, it's the accelerator technologies, right? So there's the limited, the limiting factor for, for us as scientists is how fast we can get an answer. And if we can get our answer faster through accelerated technologies, you know, with the support of the, of the nccs and the computing centers, but also the software engineers enabling that for us, then we can do more, right. And push the questions even further, you know, so once we've gotten fast enough to do what we want to do, there's always something next that we wanna look for. So, >>I mean, at nasa you have to exercise such patience, whether that be data, coming back, images from a rover, doesn't matter what it is. Sometimes there's a lot of time, days, hours, years, depending on the situation. Right? I really, I really admire that. What about you, Dan? What's got you really excited about the future here? So >>Bill talked about the, the accelerated technology, which is absolutely true and, and, and is needed to get us not to only to the point where we have the compute resources to do the simulations that Bill wants to do, and also do it in a energy efficient way. But it's really the software frameworks that go around that and the software frameworks, the technology that dealing with how to use those in an energy efficient and and most efficient way is extremely important. And that's some of the, you know, that's what I'm really here to try to understand better about is how can I support these scientists with not just the hardware, but the software frameworks by which they can be successful. >>Yeah. We've, we've had a lot of kind of philosophical discussion about this, the difference between the quantitative increases in power in computing that we're seeing versus the question of whether or not we need truly qualitative changes moving forward. Where do you see the limits of, of, of, you know, if you, if you're looking at the ability to gather more data and process more data more quickly, what you can do with that data changes when you're getting updates every second versus every month seems pretty obvious. Is there a, is there, but is there, is there a near term target that you have specifically where once you reach that target, if you weren't thinking ahead of that target, you'd kind of be going, Okay, well we solved that problem, we're getting the data in so fast that you can, you can ask me, what is the temperature in this area? And you can go, Oh, well, huh, an hour ago the data said this. Beyond that, do you need a qualitative change in our ability to process information and tease insight into out of chaos? Or do you just need more quantity to be able to get to the point where you can do things like predict weather six months in advance? What are, what are your thoughts on that? Yeah, >>It's an interesting question, right? And, and you ended it with predicting whether six months in advance, and actually I was thinking the other way, right? I was thinking going to finer and finer scales and shorter time scales when you talk about having data more frequently, right? So one of the things that I'm excited about as a modeler is going to hire resolution and representing smaller scale processes at nasa, we're, we're interested in observations that are global. So our models are global and we'd like to push those to as fine a resolution as possible to do things like severe storm predictions and so forth. So the faster we can get the data, the more data we can have, and that area would improve our ability to do that as well. So, >>And your background is in meteorology, right? >>Yes, I'm a meteorologist. >>Excellent. Okay. Yeah, yeah, >>Yeah. So, so I have to ask a question, and I'm sure all the audience cares about this. And I went through this when I was talking about the ghost satellites as well. What, what is it about weather that makes it so hard to predict? >>Oh, it's the classic chaos problem. The, the butterfly effects problem, and it's just true. You know, you always hear the story of a butterfly in Africa flaps, its rings and wings, and the weather changes in, in New York City, and it's just, computers are an excellent example of that, right? So we have a model of the earth, we can run it two times in a row and get the exact same answer, but if we flip a bit somewhere, then the answer changes 10 days later significantly. So it's a, it's a really interesting problem. So, >>Yeah. So do you have any issue with the fact that your colleague believes that butterflies are responsible for weather? No, I does that, does that, is it responsible for climate? Does that bother you at all? >>No, it doesn't. As a matter of fact, they actually run those butterfly like experi experiments within the systems where they do actually flip some bits and see what the uncertainties are that happen out 7, 8, 9 days out in advance to understand exactly what he's saying, to understand the uncertainties, but also the sensitivity with respect to the observations that they're taking. So >>Yeah, it's fascinating. It is. >>That is fascinating. Sticking with you for a second, Dan. So you're at the Center for Climate Simulation. Is that the center that's gonna help us navigate what happens over the next decade? >>Okay, so I, no one center is gonna help us navigate what's gonna happen over the next decade or the next 50 or a hundred years, right. It's gonna be everybody together. And I think NASA's role in that is really to pioneer the, the, the models that that bill and others are doing to understand what's gonna happen in not just the seasonal sub, but we also work with G, which is the God Institute for Space Studies. Yeah. Which does the decatal and, and the century long studies. Our, our job is to really help that research, understand what's happening with the client, but then feed that back into what observations we need to make next in order to better understand and better quantify the risks that we have to better quantify the mitigations that we can make to understand how and, and, and affect how the climate is gonna go for the future. So that's really what we trying to do. We're trying to do that research to understand the climate, understand what mitigations we can have, but also feedback into what observations we can make for the future. >>Yeah. And and what's the partnership ecosystem around that? You mentioned that it's gonna take all of us, I assume you work with a lot of >>Partners, Probably both of you. I mean, obviously the, the, the federal agencies work huge amounts together. Nasa, Noah is our huge partnerships. Sgs, a huge partnerships doe we've talked to doe several times this, so this, this this week already. So there's huge partnerships that go across the federal agency. We, we work also with Europeans as much as we can given the, the, the, you know, sort of the barriers of the countries and the financials. But we do collaborate as much as we can with, And the nice thing about NASA, I would say is the, all the observations that we take are public, they're paid for by the public. They're public, everybody can down them, anybody can down around the world. So that's also, and they're global measurements as Bill said, they're not just regional. >>Do you have, do you have specific, when you think about improving your ability to gain insights from data that that's being gathered? Yeah. Do you set out specific milestones that you're looking for? Like, you know, I hope by June of next year we will have achieved a place where we are able to accomplish X. Yeah. Do you, do you, Yeah. Bill, do you put, what, >>What milestones do we have here? So, yeah, I mean, do you have >>Yeah. Are, are you, are you sort of kept track of that way? Do you think of things like that? Like very specific things? Or is it just so fluid that as long as you're making progress towards the future, you feel okay? >>No, I would say we absolutely have milestones that we like to keep in track, especially from the modeling side of things, right? So whether it's observations that exist now that we want to use in our system, milestones to getting those observations integrated in, but also thinking even further ahead to the observations that we don't have yet. So we can use the models that we have today to simulate those kind of observations that we might want in the future that can help us do things that we can do right now. So those missions are, are aided by the work that we do at the GBO and, and the nccs, but, >>Okay, so if we, if we extrapolate really to the, to the what if future is really trying to understand the entire earth system as best as we can. So all the observations coming in, like you said, in in near real time, feeding that into an earth system model and to be able to predict short term, midterm or even long term predictions with, with some degree of certainty. And that may be things like climate change or it may be even more important, shorter term effects of, of severe weather. Yeah. Which is very important. And so we are trying to work towards that high resolution, immediate impact model that we can, that we can, you know, really share with the world and share those results as best, as best we can. >>Yeah. I, I have a quick, I have a quick follow up on that. I I bet we both did. >>So, so if you think about AI and ml, artificial intelligence and machine learning, something that, you know, people, people talk about a lot. Yeah. There's the concept of teaching a machine to go look for things, call it machine learning. A lot of it's machine teaching we're saying, you know, hit, you know, hit the rack on this side with a stick or the other side with the stick to get it to, to kind of go back and forth. Do you think that humans will be able to guide these systems moving forward enough to tease out the insights that we want? Or do you think we're gonna have to rely on what people think of as artificial intelligence to be able to go in with this massive amount of information with an almost infinite amount of variables and have the AI figure out that, you know what, it was the butterfly, It really was the butterfly. We all did models with it, but, but you understand the nuance that I'm saying. It's like we, we, we think we know what all the variables are and that it's chaotic because there's so many variables and there's so much data, but maybe there's something we're not taking into >>A account. Yeah, I I, I'm, I'm, I'm sure that's absolutely the case. And I'll, I'll start and let Bill, Bill jump in here. Yeah, there's a lot of nuances with a aiml. And so the, the, the, the real approach to get to where we want to be with this earth system model approach is a combination of both AI ML train models as best as we can and as unbiased way as we can. And there's a, there's a big conversation we have around that, but also with a physics or physical based model as well, Those two combined with the humans or the experts in the loop, we're not just gonna ask the artificial intelligence to predict anything and everything. The experts need to be in the loop to guide the training in as best as we, as, as we can in an unbiased, equitable way, but also interpret the results and not just give over to the ai. But that's the combination of that earth system model that we really wanna see. The future's a combination of AI l with physics based, >>But there's, there's a, there's an obvious place for a AI and ML in the modeling world that is in the parameterizations of the estimations that we have to do in our systems, right? So when we think about the earth system and modeling the earth system, there are many things like the equations of motions and thermodynamics that have fixed equations that we know how to solve on a computer. But there's a lot of things that happen physically in the atmosphere that we don't have equations for, and we have to estimate them. And machine learning through the use of high resolution models or observations in training the models to understand and, and represent that, yeah, that that's the place where it's really useful >>For us. There's so many factors, but >>We have to, but we have to make sure that we have the physics in that machine learning in those, in those training. So physics informed training isn't very important. So we're not just gonna go and let a model go off and do whatever it wants. It has to be constrained within physical constraints that the, that the experts know. >>Yeah. And with the wild amount of variables that affect our, our earth, quite frankly. Yeah, yeah. Which is geez. Which is insane. My god. So what's, what, what technology or what advancement needs to happen for your jobs to get easier, faster for our ability to predict to be even more successful than it is currently? >>You know, I think for me, the vision that I have for the future is that at some point, you know, all data is centrally located, essentially shared. We have our applications are then services that sit around all that data. I don't have to sit as a user and worry about, oh, is this all this data in place before I run my application? It's already there, it's already ready for me. My service is prepared and I just launch it out on that service. But that coupled with the performance that I need to get the result that I want in time. And I don't know when that's gonna happen, but at some point it might, you know, I don't know rooting for you, but that's, >>So there are, there are a lot of technologies we can talk about. What I'd like to mention is, is open science. So NASA is really trying to make a push and transformation towards open science. 2023 is gonna be the year of open science for nasa. And what does that mean? It means a lot of what Bill just said is that we have equity and fairness and accessibility and you can find the data, it's findability, it's fair data, you know, a fair findability accessibility reproducibility, and I forget what the eye stands for, but these are, these are tools and, and, and things that we need to, as, as a computing centers and including all the HC centers here, as well as the scientists need to support, to be as transparent as possible with the data sets and the, and the research that we're doing. And that's where I think is gonna be the best thing is if we can get this data out there that anybody can use in an equitable way and as transparent as possible, that's gonna eliminate, in my opinion, the bias over time because mistakes will be found and mistakes will be corrected over time. >>I love that. Yeah. The open source science end of this. No, it's great. And the more people that have access people I find in the academic world, especially people don't know what's going on in the private sector and vice versa. And so I love that you just brought that up. Closing question for you, because I suspect there might be some members of our audience who maybe have fantasized about working at nasa. You've both been working there for over a decade. Is it as cool as we all think of it? It is on the outside. >>I mean, it's, it's definitely pretty cool. >>You don't have to be modest about it, you know, >>I mean, just being at Goddard and being at the center where they build the James web web telescope and you can go to that clean room and see it, it's just fascinating. So it, it's really an amazing opportunity. >>Yeah. So NASA Goddard as a, as a center has, you know, information technologist, It has engineers, it has scientists, it has support staff, support team members. We have built more things, more instruments that have flown in this space than any other place in the world. The James Lab, we were part of that, part of a huge group of people that worked on James. We and James, we came through and was assembled in our, our, our clean room. It's one of the biggest clean rooms in, in, in the world. And we all took opportunities to go over and take selfies with this as they put those loveness mirrors on them. Yeah, it was awesome. It was amazing. And to see what the James we has done in such a short amount of time, the successes that they've gone through is just incredible. Now, I'm not a, I'm not a part of the James web team, but to be a, to be at the same center, to to listen to scientists like Bill talk about their work, to listen to scientists that, that talk about James, we, that's what's inspiring. And, and we get that all the time. >>And to have the opportunity to work with the astronauts that service the, the Hubble Telescope, you know, these things are, >>That's literally giving me goosebumps right now. I'm sitting over >>Here just, just an amazing opportunity. And woo. >>Well, Dan, Bill, thank you both so much for being on the show. I know it was a bit last minute, but I can guarantee we all got a lot out of it. David and I both, I know I speak for us in the whole cube audience, so thank you. We'll have you, anytime you wanna come talk science on the cube. Thank you all for tuning into our supercomputing footage here, live in Dallas. My name is Savannah Peterson. I feel cooler having sat next to these two gentlemen for the last 15 minutes and I hope you did too. We'll see you again soon.

Published Date : Nov 16 2022

SUMMARY :

The doctors are in the house and we are joined by We haven't, we haven't been here for three years, so this is actually really could you give the audience a little bit of background on what you do as I think you And quite frankly, we support a lot of what Bill and his And our job is to really, you know, maximize the use of all the observations I imagine you're dealing with a ton of data. Oh, massive amounts of data. what technology here excites you the most about the future and that will make your job easier? And push the questions even further, you know, I mean, at nasa you have to exercise such patience, whether that be data, coming back, images from a rover, And that's some of the, you know, be able to get to the point where you can do things like predict weather six months in advance? So the faster we can get the data, the more data we can have, and that area would improve our ability And I went through this when I was talking about the ghost satellites So we have a model of the earth, we can run it two times Does that bother you at all? what he's saying, to understand the uncertainties, but also the sensitivity with respect to the observations that they're taking. Yeah, it's fascinating. Is that the center that's gonna help us navigate what happens over the next decade? just the seasonal sub, but we also work with G, which is the God Institute for I assume you work with a lot of the, the, you know, sort of the barriers of the countries and the financials. Like, you know, I hope by Do you think of things like that? So we can use the models that we have today to simulate those kind of observations that we can, that we can, you know, really share with the world and share those results as best, I I bet we both did. We all did models with it, but, but you understand the nuance that I'm saying. And there's a, there's a big conversation we have around that, but also with a physics or physical based model as is in the parameterizations of the estimations that we have to do in our systems, right? There's so many factors, but We have to, but we have to make sure that we have the physics in that machine learning in those, in those training. to get easier, faster for our ability to predict to be even more successful you know, I don't know rooting for you, but that's, it's findability, it's fair data, you know, a fair findability accessibility reproducibility, And so I love that you just brought telescope and you can go to that clean room and see it, it's just fascinating. And to see what the James we has done in such a short amount of time, the successes that they've gone through is I'm sitting over And woo. next to these two gentlemen for the last 15 minutes and I hope you did too.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DavidPERSON

0.99+

Savannah PetersonPERSON

0.99+

DanPERSON

0.99+

NASAORGANIZATION

0.99+

DallasLOCATION

0.99+

God Institute for Space StudiesORGANIZATION

0.99+

JamesPERSON

0.99+

NasaORGANIZATION

0.99+

BillPERSON

0.99+

AfricaLOCATION

0.99+

New York CityLOCATION

0.99+

three yearsQUANTITY

0.99+

Dan DuffyPERSON

0.99+

Bill PutmanPERSON

0.99+

earthLOCATION

0.99+

bothQUANTITY

0.99+

todayDATE

0.99+

twoQUANTITY

0.98+

YouTubeORGANIZATION

0.98+

2023DATE

0.98+

9 daysQUANTITY

0.97+

an hour agoDATE

0.97+

8QUANTITY

0.97+

Center for Climate SimulationORGANIZATION

0.97+

7QUANTITY

0.97+

oneQUANTITY

0.97+

nasaORGANIZATION

0.97+

next decadeDATE

0.96+

June of next yearDATE

0.96+

Dr.PERSON

0.94+

10 days laterDATE

0.94+

six monthsQUANTITY

0.93+

two gentlemenQUANTITY

0.93+

this weekDATE

0.92+

this afternoonDATE

0.92+

James LabORGANIZATION

0.9+

over a decadeQUANTITY

0.87+

last three yearsDATE

0.85+

next 50DATE

0.84+

Performance Computing CenterORGANIZATION

0.8+

GBOORGANIZATION

0.77+

secondQUANTITY

0.75+

two times in a rowQUANTITY

0.72+

muchQUANTITY

0.7+

last 15 minutesDATE

0.66+

Hubble TelescopeORGANIZATION

0.65+

NASA GoddardORGANIZATION

0.65+

NoahPERSON

0.61+