Io-Tahoe Smart Data Lifecycle CrowdChat | Digital
>>from around the globe. It's the Cube with digital coverage of data automated and event. Siri's Brought to You by Iot Tahoe Welcome, everyone to the second episode in our data automated Siri's made possible with support from Iot Tahoe. Today we're gonna drill into the data lifecycle, meaning the sequence of stages that data travels through from creation to consumption to archive. The problem, as we discussed in our last episode, is that data pipelines, they're complicated, They're cumbersome, that disjointed, and they involve highly manual processes. Ah, smart data lifecycle uses automation and metadata to approve agility, performance, data quality and governance and ultimately reduce costs and time to outcomes. Now, in today's session will define the data lifecycle in detail and provide perspectives on what makes a data lifecycle smart and importantly, how to build smarts into your processes. In a moment, we'll be back with Adam Worthington from ethos to kick things off, and then we'll go into an export power panel to dig into the tech behind smart data life cycles, and it will hop into the crowdchat and give you a chance to ask questions. So stay right there. You're watching the cube innovation impact influence. Welcome >>to the Cube disruptors. Developers and practitioners learn from the voices of leaders who share their personal insights from the hottest digital events around the globe. Enjoy the best this community has to offer on the Cube, your global leader. >>High tech digital coverage. Okay, we're back with Adam Worthington. Adam, good to see you. How are things across the pond? >>Thank you, I'm sure. >>Okay, so let's let's set it up. Tell us about yourself. What? Your role is a CTO and >>automatically. As you said, we found a way to have a pretty in company ourselves that we're in our third year on. Do we specialize in emerging disruptive technologies within the infrastructure? That's the kind of cloud space on my phone is the technical lead. So I kind of my job to be an expert in all of the technologies that we work with, which can be a bit of a challenge if you have a huge for phone is one of the reasons, like deliberately focusing on on also kind of pieces a successful validation and evaluation of new technologies. >>So you guys really technology experts, data experts and probably also expert in process and delivering customer outcomes. Right? >>That's a great word there, Dave Outcomes. That's a lot of what I like to speak to customers about. >>Let's talk about smart data, you know, when you when you throw in terms like this is it kind of can feel buzz, wordy. But what are the critical aspects of so called smart data? >>Help to step back a little bit, seen a little bit more in terms of kind of where I can see the types of problems I saw. I'm really an infrastructure solution architect trace on and what I kind of benefit we organically. But over time my personal framework, I focused on three core design principal simplicity, flexibility, inefficient, whatever it was designing. And obviously they need different things, depending on what the technology area is working with. But that's a pretty good. So they're the kind of areas that a smart approach to data will directly address. Reducing silos that comes from simplifying, so moving away from conflict of infrastructure, reducing the amount of copies of data that we have across the infrastructure and reducing the amount of application environments that need different areas so smarter get with data in my eyes anyway, the further we moved away from this. >>But how does it work? I mean, how do you know what's what's involved in injecting smarts into your data lifecycle? >>I think one of my I actually did not ready, but generally one of my favorite quotes from the French lost a mathematician, Blaise Pascal. He said, If I get this right, I have written a short letter, but I didn't have time. But Israel, I love that quite for lots of reasons >>why >>direct application in terms of what we're talking about, it is actually really complicated. These developers technology capabilities to make things simple, more directly meet the needs of the business. So you provide self service capabilities that they just need to stop driving. I mean, making data on infrastructure makes the business users using >>your job. Correct me. If I'm wrong is to kind of put that all together in a solution and then help the customer realize that we talked about earlier that business out. >>Yeah, enough if they said in understanding both sides so that it keeps us on our ability to deliver on exactly what you just said is big experts in the capabilities and new a better way to do things but also having the kind of the business understanding to be able to ask the right questions. That's how new a better price is. Positions another area that I really like his stuff with their platforms. You can do more with less. And that's not just about using data redundancy. That's about creating application environments, that conservative and then the infrastructure to service different requirements that are able to use the random Io thing without getting too kind of low level as well as the sequential. So what that means is you don't necessarily have to move data from application environment a do one thing related, and then move it to the application environment. Be that environment free terms of an analytics on the left Right works. Both keep the data where it is, use it or different different requirements within the infrastructure and again do more with less. And what that does is not just about simplicity and efficiency. It significantly reduces the time to value of that as well. >>Do you have examples that you can share with us even if they're anonymous customers that you work with that are maybe a little further down on the journey. Or maybe not >>looking at the you mentioned data protection earlier. So another organization This is a project which is just kind of hearing confessions moment, huge organization. They're literally petabytes of data that was servicing their back up in archive. And what they have is not just this realization they have combined. I think I different that they have dependent on the what area of infrastructure they were backing up, whether it was virtualization, that was different because they were backing up PC's June 6th. They're backing up another database environment, using something else in the cloud knowledge bases approach that we recommended to work with them on. They were able to significantly reduce complexity and reduce the amount of time that it systems of what they were able to achieve and what this is again. One of the clients have They've gone above the threshold of being able to back up for that. >>Adam, give us the final thoughts, bring us home. In this segment, >>the family built something we didn't particularly such on, that I think it is really barely hidden. It is spoken about as much as I think it is, that agile approaches to infrastructure we're going to be touched on there could be complicated on the lack of it efficient, the impact, a user's ability to be agile. But what you find with traditional approaches and you already touched on some of the kind of benefits new approaches there. It's often very prescriptive, designed for a particular as the infrastructure environment, the way that it served up the users in kind of a packaged. Either way, it means that they need to use it in that whatever wave in data bases, that kind of service of as it comes in from a flexibility standpoint. But for this platform approach, which is the right way to address technology in my eyes enables, it's the infrastructure to be used. Flexible piece of it, the business users of the data users what we find this capability into their innovating in the way they use that on the White House. I bring benefits. This is a platform to prescriptive, and they are able to do that. What you're doing with these new approaches is all of the metrics that we touched on and pass it from a cost standpoint from a visibility standpoint, but what it means is that the innovators in the business want really, is to really understand what they're looking to achieve and now have to to innovate with us. Now, I think I've started to see that with projects season places. If you do it in the right way, you articulate the capability and empower the business users in the right ways. Very significantly. Better position. The advantages on really matching significantly bigger than their competition. Yeah, >>Super Adam in a really exciting space. And we spent the last 10 years gathering all this data, you know, trying to slog through it and figure it out. And now, with the tools that we have and the automation capabilities, it really is a new era of innovation and insights. So, Adam or they didn't thanks so much for coming on the Cube and participating in this program. >>Exciting times with that. Thank you very much Today. >>Now we're going to go into the power panel and go deeper into the technologies that enable smart data life cycles. Stay right there. You're watching the cube. Are >>you interested in test driving? The i o ta ho platform Kickstart the benefits of data automation for your business through the Iot Labs program. Ah, flexible, scalable sandbox environment on the cloud of your choice with set up a service and support provided by Iot. Top. Click on the Link and connect with the data engineer to learn more and see Iot Tahoe in action. >>Welcome back, everybody to the power panel driving business performance with smart data life cycles. Leicester Waters is here. He's the chief technology officer from Iot Tahoe. He's joined by Patrick Smith, who was field CTO from pure storage. And is that data? Who's a system engineering manager at KohI City? Gentlemen, good to see you. Thanks so much for coming on this panel. >>Thank you. >>Let's start with Lester. I wonder if each of you could just give us a quick overview of your role. And what's the number one problem that you're focused on solving for your customers? Let's start with Lester Fleet. >>Yes, I'm Lost Waters, chief technology officer for Iot Tahoe and really the number one problem that we're trying to solve for our customers is to understand, help them understand what they have, because if they don't understand what they have in terms of their data. They can't manage it. They can't control it. The cap monitor. They can't ensure compliance. So really, that's finding all you can about your data that you have. And building a catalog that could be readily consumed by the entire business is what we do. >>Patrick Field, CTO in your title That says to me, You're talking to customers all the time, so you got a good perspective on it. Give us your take on things here. >>Yeah, absolutely. So my patches in here on day talkto customers and prospects in lots of different verticals across the region. And as they look at their environments and their data landscape, they're faced with massive growth in the data that they're trying to analyze and demands to be able to get insight our stuff and to deliver better business value faster than they've ever had to do in the past. So >>got it. And is that of course, Kohi City. You're like the new kid on the block. You guys were really growing rapidly created this whole notion of data management, backup and and beyond. But I'm assistant system engineering manager. What are you seeing from from from customers your role and the number one problem that you're solving. >>Yeah, sure. So the number one problem I see time and again speaking with customers. It's around data fragmentation. So do two things like organic growth, even maybe budgetary limitations. Infrastructure has grown over time very piecemeal, and it's highly distributed internally. And just to be clear, you know, when I say internally, that >>could be >>that it's on multiple platforms or silos within an on Prem infrastructure that it also does extend to the cloud as well. >>Right Cloud is cool. Everybody wants to be in the cloud, right? So you're right, It creates, Ah, maybe unintended consequences. So let's start with the business outcome and kind of try to work backwards to people you know. They want to get more insights from data they want to have. Ah, Mawr efficient data lifecycle. But so let's let me start with you were thinking about like the North Star for creating data driven cultures. You know, what is the North Star or customers >>here? I think the North Star, in a nutshell, is driving value from your data. Without question, I mean way, differentiate ourselves these days by even nuances in our data now, underpinning that, there's a lot of things that have to happen to make that work out. Well, you know, for example, making sure you adequately protect your data, you know? Do you have a good You have a good storage sub system? Do you have a good backup and recovery point objectives? Recovery time objective. How do you Ah, are you fully compliant? Are you ensuring that you're taking all the boxes? There's a lot of regulations these days in terms with respect to compliance, data retention, data, privacy and so forth. Are you taking those boxes? Are you being efficient with your, uh, your your your data? You know, In other words, I think there's a statistic that someone mentioned me the other day that 53% of all businesses have between three and 15 copies of the same data. So you know, finding and eliminating does is it is part of the part of the problem is when you do a chase, >>um, I I like to think of you're right, no doubt, business value and and a lot of that comes from reducing the end in cycle times. But anything that you guys would would add to that. Patrick, Maybe start with Patrick. >>Yeah, I think I think in value from your data really hits on tips on what everyone wants to achieve. But I think there are a couple of key steps in doing that. First of all, is getting access to the data and asked that, Really, it's three big problems, firstly, working out what you've got. Secondly, looking at what? After working on what you've got, how to get access to it? Because it's all very well knowing that you've got some data. But if you can't get access to it either because of privacy reasons, security reasons, then that's a big challenge. And then finally, once you've got access to the data making sure that you can process that data in a timely manner >>for me, you know it would be that an organization has got a really good global view of all of its data. It understands the data flow and dependencies within their infrastructure, understands that precise legal and compliance requirements, and you had the ability to action changes or initiatives within their environment to give the fun. But with a cloud like agility. Um, you know, and that's no easy feat, right? That is hard work. >>Okay, so we've we've talked about. The challenge is in some of the objectives, but there's a lot of blockers out there, and I want to understand how you guys are helping remove them. So So, Lester. But what do you see as some of the big blockers in terms of people really leaning in? So this smart data lifecycle >>yeah, Silos is is probably one of the biggest one I see in business is yes, it's it's my data, not your data. Lots of lots of compartmentalization. Breaking that down is one of the one of the challenges. And having the right tools to help you do that is only part of the solution. There's obviously a lot of cultural things that need to take place Teoh to break down those silos and work together. If you can identify where you have redundant data across your enterprise, you might be able to consolidate those. >>So, Patrick, so one of the blockers that I see is legacy infrastructure, technical debt, sucking all the budget you got. You know, too many people have having to look after, >>as you look at the infrastructure that supports people's data landscapes today for primarily legacy reasons. The infrastructure itself is siloed. So you have different technologies with different underlying hardware and different management methodologies that they're there for good reason, because historically you have to have specific fitness, the purpose for different data requirements. And that's one of the challenges that we tackled head on a pure with with the flash blade technology and the concept of the data, a platform that can deliver in different characteristics for the different workloads. But from a consistent data platform >>now is that I want to go to you because, you know, in the world in your world, which to me goes beyond backup. And one of the challenges is, you know, they say backup is one thing. Recovery is everything, but as well. The the CFO doesn't want to pay for just protection, and one of things that I like about what you guys have done is you. You broadened the perspective to get more value out of your what was once seen as an insurance policy. >>I do see one of the one of the biggest blockers as the fact that the task at hand can, you know, can be overwhelming for customers. But the key here is to remember that it's not an overnight change. It's not, you know, a flick of a switch. It's something that can be tackled in a very piecemeal manner on. Absolutely. Like you said, You know, reduction in TCO and being able to leverage the data for other purposes is a key driver for this. So, you know, this can be this can be resolved. It would be very, you know, pretty straightforward. It can be quite painless as well. Same goes for unstructured data, which is very complex to manage. And, you know, we've all heard the stats from the the analysts. You know, data obviously is growing at an extremely rapid rate, but actually, when you look at that, you know how is actually growing. 80% of that growth is actually in unstructured data, and only 20% of that growth is in unstructured data. S o. You know, these are quick win areas that customers can realize immediate tco improvement and increased agility as well >>paint a picture of this guy that you could bring up the life cycle. You know what you can see here is you've got this this cycle, the data lifecycle and what we're wanting to do is inject intelligence or smarts into this, like like life cycles. You see, you start with ingestion or creation of data. You're you're storing it. You got to put it somewhere, right? You gotta classify it. You got to protect it. And then, of course, you want to reduce the copies, make it, you know, efficient on. And then you want to prepare it so that businesses can actually sumit. And then you've got clients and governance and privacy issues, and I wonder if we could start with you. Lester, this is, you know, the picture of the life cycle. What role does automation play in terms of injecting smarts into the lifecycle? >>Automation is key here, especially from the discover it catalog and classify perspective. I've seen companies where they geo and will take and dump their all of their database scheme is into a spreadsheet so that they can sit down and manually figure out what attributes 37 means for a column names, Uh, and that's that's only the tip of the iceberg. So being able to do automatically detect what you have automatically deduced where what's consuming the data, you know, upstream and downstream. Being able to understand all of the things related to the lifecycle of your data. Back up archive deletion. It is key. And so we're having having good tool. IShares is very >>important. So, Patrick, obviously you participate in the store piece of this picture s I wonder if you could talk more specifically about that. But I'm also interested in how you effect the whole system view the the end end cycle time. >>Yeah, I think Leicester kind of hit the nail on the head in terms of the importance of automation because the data volumes are just just so massive. Now that you can, you can you can effectively manage or understand or catalog your data without automation. Once you understand the data and the value of the data, then that's where you can work out where the data needs to be at any point in >>time, right? So pure and kohi city obviously partner to do that and of course, is that you guys were part of the protect you certainly part of the retain. But Also, you provide data management capabilities and analytics. I wonder if you could add some color there. >>Yeah, absolutely. So, like you said, you know, we focused pretty heavily on data protection. Is just one of our one of our areas on that infrastructure. It is just sitting there, really? Can, you know, with the legacy infrastructure, It's just sitting there, you know, consuming power, space cooling and pretty inefficient. And what, if anything, that protest is a key part of that. If I If I have a modern data platform such as, you know, the cohesive data platform, I can actually do a lot of analytics on that through application. So we have a marketplace for APS. >>I wonder if we could talk about metadata. It's It's increasingly important. Metadata is data about the data, but Leicester maybe explain why it's so important and what role it plays in terms of creating smart data lifecycle. A >>lot of people think it's just about the data itself, but there's a lot of extended characteristics about your data. So so imagine if or my data life cycle I can communicate with the backup system from Kohi City and find out when the last time that data was backed up or where is backed up to. I can communicate exchange data with pure storage and find out what two years? And is the data at the right tier commensurate with its use level pointed out and being able to share that metadata across systems? I think that's the direction that we're going in right now. We're at the stage where just identifying the metadata and trying to bring it together and catalog the next stage will be OK using the AP eyes it that that we have between our systems can't communicate and share that data and build good solutions for customers to use. >>It's a huge point that you just made. I mean, you know, 10 years ago, automating classification was the big problem, and it was machine intelligence, you know, obviously attacking that, But your point about as machines start communicating to each other and you start, it's cloud to cloud. There's all kinds of metadata, uh, kind of new meta data that's being created. I often joke that someday there's gonna be more metadata than data, so that brings us to cloud and that I'd like to start with you. >>You know, I do think, you know, having the cloud is a great thing. And it has got its role to play, and you can have many different permutations and iterations of how you use it on. Um, you know, I may have sort of mentioned previously. You know, I've seen customers go into the cloud very, very quickly, and actually recently, they're starting to remove workloads from the cloud. And the reason why this happens is that, you know, Cloud has got its role to play, but it's not right for absolutely everything, especially in their current form as well. A good analogy I like to use on this may sound a little bit cliche, but you know, when you compare clouds versus on premises data centers, you can use the analogy of houses and hotels. So to give you an idea so you know, when we look at hotels, that's like the equivalent of a cloud, right? I can get everything I need from there. I can get my food, my water, my outdoor facilities. If I need to accommodate more people, I can rent some more rooms. I don't have to maintain the hotel. It's all done for me. When you look at houses the equivalent to on premises infrastructure, I pretty much have to do everything myself, right. So I have to purchase the house. I have to maintain it. I have to buy my own food and water. Eat it. You have to make improvements myself. But then why do we all live in houses? No, in hotels. And the simple answer that I can I can only think of is, is that it's cheaper, right. It's cheaper to do it myself. But that's not to say that hotels haven't got their role to play. Um, you know? So, for example, if I've got loads of visitors coming over for the weekend, I'm not going to go build an extension to my house just for them. I will burst into my hotel into the cloud, um, and use it for, you know, for for things like that. So what I'm really saying is the cloud is great for many things, but it can work out costlier for certain applications, while others are a perfect >>It's an interesting analogy. I hadn't thought of that before, but you're right because I was going to say Well, part of it is you want the cloud experience everywhere, but you don't always want the cloud experience especially, you know, when you're with your family, you want certain privacy that I've not heard that before. He's out. So that's the new perspective s Oh, thank you, but but But Patrick, I do want to come back to that cloud experience because, in fact, that's what's happening. In a lot of cases, organizations are extending the cloud properties of automation on Prem. >>Yeah, I thought, as I thought, a really interesting point and a great analogy for the use of the public cloud. And it really reinforces the importance of the hybrid and multi cloud environment because it gives you the flexibility to choose where is the optimal environment to run your business workloads? And that's what it's all about and the flexibility to change which environment you're running in, either for more months to the next or from one year to the next. Because workloads change and the characteristics that are available in the cloud change, the hybrid cloud is something that we've we've lived with ourselves of pure, So our pure one management technology actually sits in hybrid cloud and what we we started off entirely cloud native. But now we use public cloud for compute. We use our own technology at the end of a high performance network link to support our data platform. So we get the best of both worlds and I think that's where a lot of our customers are trying to get to. >>Alright, I want to come back in a moment there. But before we do, let's see, I wonder if we could talk a little bit about compliance, governance and privacy. I think the Brits hung on. This panel is still in the EU for now, but the you are looking at new rules. New regulations going beyond GDP are where does sort of privacy governance, compliance fit in the data lifecycle, then, is that I want your thoughts on this as well. >>Yeah, this is this is a very important point because the landscape for for compliance, around data privacy and data retention is changing very rapidly. And being able to keep up with those changing regulations in an automated fashion is the only way you're gonna be able to do it. Even I think there's a some sort of Ah, maybe ruling coming out today or tomorrow with the changed in the r. So this is things are all very key points and being able to codify those rules into some software. Whether you know, Iot Tahoe or or your storage system or kohi city, it will help you be compliant is crucial. >>Yeah. Is that anything you can add there? I mean, it's really is your wheelhouse. >>Yeah, absolutely. So, you know, I think anybody who's watching this probably has gotten the message that, you know, less silos is better. And it absolutely it also applies to data in the cloud is where as well. So you know, my aiming Teoh consolidate into fewer platforms, customers can realize a lot better control over their data. And the natural effect of this is that it makes meeting compliance and governance a lot easier. So when it's consolidated, you can start to confidently understand who's accessing your data. How frequently are they accessing the data? You can also do things like, you know, detecting anomalous file access activities and quickly identify potential threats. >>Okay, Patrick, we were talking. You talked earlier about storage optimization. We talked to Adam Worthington about the business case, the numerator, which is the business value, and then the denominator, which is the cost and what's unique about pure in this regard. >>Yeah, and I think there are. There are multiple time dimensions to that. Firstly, if you look at the difference between legacy storage platforms that used to take up racks or aisles of space in the data center, the flash technology that underpins flash blade way effectively switch out racks rack units on. It has a big play in terms of data center footprint, and the environmental is associated with the data center. If you look at extending out storage efficiencies and the benefits it brings, just the performance has a direct effect on start we whether that's, you know, the start from the simplicity that platform so that it's easy and efficient to manage, whether it's the efficiency you get from your data. Scientists who are using the outcomes from the platform, making them more efficient to new. If you look at some of our customers in the financial space there, their time to results are improved by 10 or 20 x by switching to our technology from legacy technologies for their analytics, platforms. >>The guys we've been running, you know, Cube interviews in our studios remotely for the last 120 days is probably the first interview I've done where haven't started off talking about Cove it, Lester. I wonder if you could talk about smart data lifecycle and how it fits into this isolation economy. And hopefully, what will soon be a post isolation economy? >>Yeah, Come. It has dramatically accelerated the data economy. I think. You know, first and foremost, we've all learned to work at home. You know, we've all had that experience where, you know, people would have been all about being able to work at home just a couple days a week. And here we are working five days. That's how to knock on impact to infrastructure, to be able to support that. But going further than that, you know, the data economy is all about how a business can leverage their data to compete in this New World order that we are now in code has really been a forcing function to, you know, it's probably one of the few good things that have come out of government is that we've been forced to adapt and It's a zoo. Been an interesting journey and it continues to be so >>like Lester said, you know, we've We're seeing huge impact here. Working from home has pretty much become the norm. Now, you know, companies have been forced into basically making it work. If you look online retail, that's accelerated dramatically as well. Unified communications and videoconferencing. So really, you know the point here, is that Yes, absolutely. We're you know, we've compressed, you know, in the past, maybe four months. What already would have taken maybe even five years, maybe 10 years or so >>We got to wrap. But Celester Louis, let me ask you to sort of get paint. A picture of the sort of journey the maturity model that people have to take. You know, if they want to get into it, where did they start? And where are they going to give us that view, >>I think, versus knowing what you have. You don't know what you have. You can't manage it. You can't control that. You can't secure what you can't ensure. It's a compliant s so that that's first and foremost. Uh, the second is really, you know, ensuring that your compliance once, once you know what you have. Are you securing it? Are you following the regulatory? The applicable regulations? Are you able to evidence that, uh, how are you storing your data? Are you archiving it? Are you storing it effectively and efficiently? Um, you know, have you Nirvana from my perspective, is really getting to a point where you you've consolidated your data, you've broken down the silos and you have a virtually self service environment by which the business can consume and build upon their data. And really, at the end of the day, as we said at the beginning, it's all about driving value out of your data. And ah, the automation is is key to this, sir. This journey >>that's awesome and you just described is sort of a winning data culture. Lester, Patrick, thanks so much for participating in this power panel. >>Thank you, David. >>Alright, So great overview of the steps in the data lifecycle and how to inject smarts into the process is really to drive business outcomes. Now it's your turn. Hop into the crowd chat, please log in with Twitter or linked in or Facebook. Ask questions, answer questions and engage with the community. Let's crowdchat, right. Yeah, yeah, yeah.
SUMMARY :
behind smart data life cycles, and it will hop into the crowdchat and give you a chance to ask questions. Enjoy the best this community has to offer Adam, good to see you. and So I kind of my job to be an expert in all of the technologies that we work with, So you guys really technology experts, data experts and probably also expert in That's a lot of what I like to speak to customers Let's talk about smart data, you know, when you when you throw in terms like this is it kind of can feel buzz, reducing the amount of copies of data that we have across the infrastructure and reducing I love that quite for lots of reasons So you provide self service capabilities help the customer realize that we talked about earlier that business out. that it keeps us on our ability to deliver on exactly what you just said is big experts Do you have examples that you can share with us even if they're anonymous customers that you work looking at the you mentioned data protection earlier. In this segment, But what you find with traditional approaches and you already touched on some of you know, trying to slog through it and figure it out. Thank you very much Today. Now we're going to go into the power panel and go deeper into the technologies that enable Click on the Link and connect with the data Welcome back, everybody to the power panel driving business performance with smart data life I wonder if each of you could just give us a quick overview of your role. So really, that's finding all you can about your data that you so you got a good perspective on it. to deliver better business value faster than they've ever had to do in the past. What are you seeing from from from And just to be clear, you know, when I say internally, that it also does extend to the cloud as well. So let's start with the business outcome and kind of try to work backwards to people you and eliminating does is it is part of the part of the problem is when you do a chase, But anything that you guys would would add to that. But if you can't get access to it either because of privacy reasons, and you had the ability to action changes or initiatives within their environment to give But what do you see as some of the big blockers in terms of people really If you can identify where you have redundant data across your enterprise, technical debt, sucking all the budget you got. So you have different And one of the challenges is, you know, they say backup is one thing. But the key here is to remember that it's not an overnight the copies, make it, you know, efficient on. what you have automatically deduced where what's consuming the data, this picture s I wonder if you could talk more specifically about that. you can you can effectively manage or understand or catalog your data without automation. is that you guys were part of the protect you certainly part of the retain. Can, you know, with the legacy infrastructure, It's just sitting there, you know, consuming power, the data, but Leicester maybe explain why it's so important and what role it And is the data at the right tier commensurate with its use level pointed out I mean, you know, 10 years ago, automating classification And it has got its role to play, and you can have many different permutations and iterations of how you you know, when you're with your family, you want certain privacy that I've not heard that before. at the end of a high performance network link to support our data platform. This panel is still in the EU for now, but the you are looking at new Whether you know, Iot Tahoe or or your storage system I mean, it's really is your wheelhouse. So you know, my aiming Teoh consolidate into Worthington about the business case, the numerator, which is the business value, to manage, whether it's the efficiency you get from your data. The guys we've been running, you know, Cube interviews in our studios remotely for the last 120 days But going further than that, you know, the data economy is all about how a business can leverage we've compressed, you know, in the past, maybe four months. A picture of the sort of journey the maturity model that people have to take. from my perspective, is really getting to a point where you you've consolidated your that's awesome and you just described is sort of a winning data culture. Alright, So great overview of the steps in the data lifecycle and how to inject smarts into the process
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Patrick | PERSON | 0.99+ |
David | PERSON | 0.99+ |
Adam Worthington | PERSON | 0.99+ |
Adam Worthington | PERSON | 0.99+ |
Patrick Field | PERSON | 0.99+ |
Patrick Smith | PERSON | 0.99+ |
Adam | PERSON | 0.99+ |
five days | QUANTITY | 0.99+ |
June 6th | DATE | 0.99+ |
10 | QUANTITY | 0.99+ |
tomorrow | DATE | 0.99+ |
five years | QUANTITY | 0.99+ |
third year | QUANTITY | 0.99+ |
North Star | ORGANIZATION | 0.99+ |
Lester | PERSON | 0.99+ |
Siri | TITLE | 0.99+ |
10 years | QUANTITY | 0.99+ |
80% | QUANTITY | 0.99+ |
second episode | QUANTITY | 0.99+ |
Blaise Pascal | PERSON | 0.99+ |
Leicester Waters | ORGANIZATION | 0.99+ |
15 copies | QUANTITY | 0.99+ |
53% | QUANTITY | 0.99+ |
Lester | ORGANIZATION | 0.99+ |
Today | DATE | 0.99+ |
both sides | QUANTITY | 0.99+ |
four months | QUANTITY | 0.99+ |
each | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
two years | QUANTITY | 0.99+ |
20 x | QUANTITY | 0.99+ |
Iot Tahoe | ORGANIZATION | 0.99+ |
one | QUANTITY | 0.99+ |
first interview | QUANTITY | 0.99+ |
second | QUANTITY | 0.98+ |
Celester Louis | PERSON | 0.98+ |
ORGANIZATION | 0.98+ | |
Lester Fleet | ORGANIZATION | 0.98+ |
ORGANIZATION | 0.98+ | |
Both | QUANTITY | 0.98+ |
Firstly | QUANTITY | 0.98+ |
first | QUANTITY | 0.98+ |
one year | QUANTITY | 0.98+ |
10 years ago | DATE | 0.98+ |
White House | ORGANIZATION | 0.98+ |
One | QUANTITY | 0.98+ |
two things | QUANTITY | 0.97+ |
both worlds | QUANTITY | 0.97+ |
Secondly | QUANTITY | 0.97+ |
Iot | ORGANIZATION | 0.97+ |
Iot Labs | ORGANIZATION | 0.97+ |
20% | QUANTITY | 0.96+ |
Cove | ORGANIZATION | 0.96+ |
First | QUANTITY | 0.96+ |
Dave Outcomes | PERSON | 0.95+ |
firstly | QUANTITY | 0.95+ |
three big problems | QUANTITY | 0.94+ |
three core | QUANTITY | 0.94+ |
Israel | LOCATION | 0.94+ |
three | QUANTITY | 0.94+ |
KohI City | ORGANIZATION | 0.91+ |
Kohi City | LOCATION | 0.9+ |
one thing | QUANTITY | 0.89+ |
Leicester | ORGANIZATION | 0.89+ |