John Lockwood, Algo Logic Systems | Super Computing 2017
>> Narrator: From Denver, Colorado, it's theCUBE. Covering Super Computing '17, brought to you by Intel. (electronic music) >> Hey, welcome back everybody. Jeff Frick here with theCUBE. We're at Denver, Colorado at Super Computing 2017. 12,000 people, our first trip to the show. We've been trying to come for awhile, it's pretty amazing. A lot of heavy science in terms of the keynotes. All about space and looking into brain mapping and it's heavy lifting, academics all around. We're excited to have our next guest, who's an expert, all about speed and that's John Lockwood. He's the CEO of Algo-Logic. First off, John, great to see you. >> Yeah, thanks Jeff, glad to be here. >> Absolutely, so for folks that aren't familiar with the company, give them kind of the quick overview of Algo. >> Yes, Algo-Logic puts algorithms into logic. So our main focus is taking things are typically done in software and putting them into FPGAs and by doing that we make them go faster. >> So it's a pretty interesting phenomenon. We've heard a lot from some of the Intel execs about kind of the software overlay that now, kind of I guess, a broader ecosystem of programmers into hardware, but then still leveraging the speed that you get in hardware. So it's a pretty interesting combination to get those latencies down, down, down. >> Right, right, I mean Intel certainly made a shift to go on into heterogeneous compute. And so in this heterogeneous world, we've got software running on Xeons, Xeon Phis. And we've also got the need though, to use new compute in more than just the traditional microprocessor. And so with the acquisition of Altera, is that now Intel customers can use FPGAs in order to get the benefit in speed. And so Algo-Logic, we typically provide applications with software APIs, so it makes it really easy for end customers to deploy FPGAs into their data center, into their hosts, into their network and start using them right away. >> And you said one of your big customer sets is financial services and trading desk. So low latency there is critical as millions and millions and millions if not billions of dollars. >> Right, so Algo-Logic we have a whole product line of high-frequency trading systems. And so our Tick-To-Trade system is unique in the fact that it has a sub-microsecond trading latency and this means going from market data that comes in, for example on CME for options and futures trading, to time that we can place a fix order back out to the market. All of that happens in an FPGA. That happens in under a microsecond. So under a millionth of second and that beats every other software system that's being used. >> Right, which is a game change, right? Wins or losses can be made on those time frames. >> It's become a must have is that if you're trading on Wall Street or trading in Chicago and you're not trading with an FPGA, you're trading at a severe disadvantage. And so we make a product that enables all the trading firms to be playing on a fair, level playing field against the big firms. >> Right, so it's interesting because the adoption of Flash and some of these other kind of speed accelerator technologies that have been happening over the last several years, people are kind of getting accustomed to the fact that speed is better, but often it was kind of put aside in this kind of high-value applications like financial services and not really proliferating to a broader use of applications. I wonder if you're seeing that kind of change a little bit, where people are seeing the benefits of real time and speed beyond kind of the classic high-value applications? >> Well, I think the big change that's happened is that it's become machine-to-machine now. And so humans, for example in trading, are not part of the loop anymore and so it's not a matter of am I faster than another person? It's am I faster than the other person's machine? And so this notion of having compute that goes fast has become suddenly dramatically much more important because everything now is going to machine versus machine. And so if you're an ad tech advertiser, is that how quickly you can do an auction to place an ad matters and if you can get a higher value ad placed because you're able to do a couple rounds of an auction, that's worth a lot. And so, again, with Algo-Logic we make things go faster and that time benefit means, that all thing else being the same, you're the first to come to a decision. >> Right, right and then of course the machine-to-machine obviously brings up the hottest topic that everybody loves to talk about is autonomous vehicles and networked autonomous vehicles and just the whole IOT space with the compute moving out to the edge. So this machine-to-machine systems are only growing in importance and really percentage of the total compute consumption by far. >> That's right, yeah. So last year at Super Computing, we demonstrated a drone, bringing in realtime data from a drone. So doing realtime data collection and doing processing with our Key Value Store. So this year, we have a machine learning application, a Markov Decision Process where we show that we can scale-out a machine learning process and teach cars how to drive in a few minutes. >> Teach them how to drive in a few minutes? >> Right. >> So that's their learning. That's not somebody programming the commands. They're actually going through a process of learning? >> Right, well so the Key Value Store is just a part of this. We're just the part of the system that makes the scale-outs that runs well in a data center. And so we're still running the Markov Decision Process in simulations in software. So we have a couple Xeon servers that we brought with us to do the machine learning and a data center would scale-out to be dozens of racks, but even with a few machines though, for simple highway driving, what we can show is we start off with, the system's untrained and that in the Markov Decision Process, we reward the final state of not having accidents. And so at first, the cars drive and they're bouncing into each other. It's like bumper cars, but within a few minutes and after about 15 million simulations, which can be run that quickly, is that the cars start driving better than humans. And so I think that's a really phenomenal step, is the fact that you're able to get to a point where you can train a system how to drive and give them 15 man years of experience in a matter of minutes by the scale-out compute systems. >> Right, 'cause then you can put in new variables, right? You can change that training and modify it over time as conditions change, throw in snow or throw in urban environments and other things. >> Absolutely, right. And so we're not pretending that our machine learning, that application we're showing here is an end-all solution. But as you bring in other factors like pedestrians, deer, other cars running different algorithms or crazy drivers, is that you want to expose the system to those conditions as well. And so one of the questions that came up to us was, "What machine learning application are you running?" So we're showing all 25 cars running one machine learned application and that's incrementally getting better as they learn to drive, but we could also have every car running a different machine learning application and see how different AIs interact with each other. And I think that's what you're going to see on the highway as we have more self-driving cars running different algorithms, we have to make sure they all place nice with each other. >> Right, but it's really a different way of looking at the world, right, using machine learning, machine-to-machine versus single person or a team of people writing a piece of software to instruct something to do something and then you got to go back and change it. This is a much more dynamic realtime environment that we're entering into with IOT. >> Right, I mean the machine-to-human, which was kind of last year and years before, were, "How do you make interactions "between the computers better than humans?" But now it's about machine-to-machine and it's,"How do you make machines interact better "with other machines?" And that's where it gets really competitive. I mean, you can imagine with drones for example, for applications where you have drones against drones, the drones that are faster are going to be the ones that win. >> Right, right, it's funny, we were just here last week at the commercial drone show and it's pretty interesting how they're designing the drones now into a three-part platform. So there's the platform that flies around. There's the payload, which can be different sensors or whatever it's carrying, could be herbicide if it's an agricultural drone. And then they've opened up the STKs, both on the control side as well as the mobile side, in terms of the controls. So it's a very interesting way that all these things now, via software could tie together, but as you say, using machine learning you can train them to work together even better, quicker, faster. >> Right, I mean having a swarm or a cluster of these machines that work with each other, you could really do interesting things. >> Yeah, that's the whole next thing, right? Instead of one-to-one it's many-to-many. >> And then when swarms interact with other swarms, then I think that's really fascinating. >> So alright, is that what we're going to be talking about? So if we connect in 2018, what are we going to be talking about? The year's almost over. What are your top priorities for next year? >> Our top priorities are to see. We think that FPGA is just playing this important part. A GPU for example, became a very big part of the super computing systems here at this conference. But the other side of heterogeneous is the FPGA and the FPGA has seen almost, just very minimal adoption so far. But the FPGA has the capability of providing, especially when it comes to doing network IO transactions, it's speeding up realtime interactions, it has an ability to change the world again for HPC. And so I'm expecting that in a couple years, at this HPC conference, that what we'll be talking about, is the biggest top 500 super computers, is that how big of FPGAs do they have. Not how big of GPUs do they have. >> All right, time will tell. Well, John, thanks for taking a few minutes out of your day and stopping by. >> Okay, thanks Jeff, great to talk to you. >> All right, he's John Lockwood, I'm Jeff Frick. You're watching theCUBE from Super Computing 2017. Thanks for watching. >> Bye. (electronic music)
SUMMARY :
Covering Super Computing '17, brought to you by Intel. A lot of heavy science in terms of the keynotes. that aren't familiar with the company, and by doing that we make them go faster. still leveraging the speed that you get in hardware. And so with the acquisition of Altera, And you said one of your big customer sets Right, so Algo-Logic we have a whole product line Right, which is a game change, right? And so we make a product that enables all the trading firms Right, so it's interesting because the adoption of Flash And so this notion of having compute that goes fast and just the whole IOT space and teach cars how to drive in a few minutes. That's not somebody programming the commands. and that in the Markov Decision Process, Right, 'cause then you can put in new variables, right? And so one of the questions that came up to us was, of looking at the world, right, using machine learning, Right, I mean the machine-to-human, in terms of the controls. you could really do interesting things. Yeah, that's the whole next thing, right? And then when swarms interact with other swarms, So alright, is that what we're going to be talking about? And so I'm expecting that in a couple years, All right, time will tell. All right, he's John Lockwood, I'm Jeff Frick. (electronic music)
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Jeff | PERSON | 0.99+ |
John Lockwood | PERSON | 0.99+ |
Chicago | LOCATION | 0.99+ |
Jeff Frick | PERSON | 0.99+ |
John | PERSON | 0.99+ |
2018 | DATE | 0.99+ |
millions | QUANTITY | 0.99+ |
25 cars | QUANTITY | 0.99+ |
last week | DATE | 0.99+ |
Algo-Logic | ORGANIZATION | 0.99+ |
last year | DATE | 0.99+ |
billions of dollars | QUANTITY | 0.99+ |
12,000 people | QUANTITY | 0.99+ |
Wall Street | LOCATION | 0.99+ |
Denver, Colorado | LOCATION | 0.99+ |
Altera | ORGANIZATION | 0.99+ |
next year | DATE | 0.99+ |
this year | DATE | 0.99+ |
Algo Logic Systems | ORGANIZATION | 0.99+ |
first trip | QUANTITY | 0.98+ |
under a microsecond | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
Intel | ORGANIZATION | 0.98+ |
dozens of racks | QUANTITY | 0.98+ |
first | QUANTITY | 0.98+ |
Super Computing 2017 | EVENT | 0.97+ |
First | QUANTITY | 0.97+ |
both | QUANTITY | 0.97+ |
under a millionth of second | QUANTITY | 0.96+ |
500 super computers | QUANTITY | 0.96+ |
Super Computing '17 | EVENT | 0.94+ |
15 man years | QUANTITY | 0.94+ |
about 15 million simulations | QUANTITY | 0.93+ |
three-part platform | QUANTITY | 0.89+ |
minutes | QUANTITY | 0.88+ |
Xeon | ORGANIZATION | 0.84+ |
theCUBE | ORGANIZATION | 0.82+ |
single person | QUANTITY | 0.78+ |
one of | QUANTITY | 0.75+ |
last several years | DATE | 0.74+ |
Key Value Store | ORGANIZATION | 0.72+ |
couple | QUANTITY | 0.63+ |
couple years | QUANTITY | 0.61+ |
Flash | TITLE | 0.61+ |
years | DATE | 0.55+ |
Xeon Phis | COMMERCIAL_ITEM | 0.51+ |
machines | QUANTITY | 0.5+ |
questions | QUANTITY | 0.5+ |
Value Store | ORGANIZATION | 0.49+ |
Key | TITLE | 0.47+ |
Xeons | ORGANIZATION | 0.4+ |
Markov | ORGANIZATION | 0.39+ |
CME | TITLE | 0.39+ |