Image Title

Search Results for Lastic MapReduce:

Jack Norris | Hadoop Summit 2012


 

>>Okay. We're back live in Silicon valley and San Jose, California for the continuous coverage of siliconangle.tv and have duke world 2012. This is ground zero for the alpha geeks in big data. Uh, just the tech elite. We call them tech athletes and, uh, we're excited to cover it on the ground. Extract the signal from the noise here. This is the cube, our flagship telecast. I'm joining my co-host Jeff Kelly from Wiki bond.org, the best analyst in the business. Jeff, welcome back for another segment. End of the day, day one loving every minute. Okay. We're here with our guest. Jack Norris is a cm of map bar Jack. Welcome back to the cube. You've been on a few times. Um, so you guys have some news. Yes. So let's get right to the news. So you guys are a player in the business, so share with your news, the folks. Excellent jump right in. >>So, uh, two big announcements today, we announced that Amazon is integrating map bar as part of their Lastic MapReduce service and both edition or, or free edition. M three is available as well as M five directly with Amazon, Amazon in the cloud. >>So what's the value proposition. Why would a customer say, all right, I want to do this in the cloud manpower, an Amazon cloud rather than doing it on premise. >>Okay. So let's start with, I mean, there's a lot of value propositions, all balled up into one here. Uh, first of all, in the cloud, it allows them to spin up very quickly. Within a couple minutes, you can get, uh, you know, hundreds of nodes available. Um, and, uh, and depending on where you're processing the data, if you've got a lot of data in the cloud already makes a lot of sense to do the Hadoop processing directly there. So that's, that's one area. A second is you might have an on-premise cloud deployment and need to have a disaster recovery. So map R provides point in time, snapshots, uh, as well as, as a white area replication. So you can use mirroring having Amazon available as a target is a huge advantage. And then there's also a third application area where you can do processing of the data in the cloud and then synchronize those results to an on-premise. So basically process where the data is combined the results into a cluster on premise. So you >>Don't have to move the raw data. Uh, >>On-premise actually, it's all about let's do the processing on the data. Well, you know, the whole, >>The value proposition and big data in general is let's not move, move data as little as possible. Yep. Uh, you know, so you bring the computation to the data, if you can. Uh, so what are your take on this event? I mean, we've got, uh, this is a, you know, the 4th of June summit, uh, you know, Hortonworks is now fully taken over the show and talk about what you see out here in terms of, uh, the other vendors that play. And, uh, just to kind of the attendees, the vibe you're seeing, >>Uh, it's a lot of excitement. I think a big difference between last year, which seemed to be very developer focused. We're seeing a lot of, a lot of presentations by customers. A lot of information was shared by our customers today. It was fun to see that, uh, comScore's shared, uh, shared their success. Boeing gap map is, uh, it was great for us. >>Fantastic. We look at Amazon, Amazon, first of all, is the gold standard for public cloud. Right? They've knocked it out of the park. Everyone knows Amazon. Um, but they've been criticized on the big data front because of the cycle times involve on. Um, and some developers and mean for web service spending up and down. No problem. Um, and we're seeing businesses like Netflix run on Amazon. So Amazon is not a stranger to running scale for cloud, but Hadoop has kind of been a klugey thing for Amazon. So I think, you know, talk about why Amazon and you guys is a good fit out to the market. The market reach is great. So you guys know and have a huge addressable market. Are you guys helping solve some of that complexity with the, uh, with the MapReduce side? What's, >>What's the core, I guess the first comment first response would be, I think every customer should have that type of Kluge. Uh, uh, they could have the success that Amazon has in Hadoop. They have a huge number of, of, uh, of Hadoop deployments have been very, very successful. I think, >>I mean, you know what I mean by it's natural, it's, cloogy everywhere right now. That's the problem. But Amazon has huge scale, um, and had not a natural fit. There >>Is not a natural fit >>For the data for the data component. And, uh, uh, the HBase for example, >>Component. So where were Amazons, you know, made it very frictionless is the ability to spin up Hadoop to do the analysis. The gap that was missing is some of the, the ha capabilities. The data protection features the disaster recovery, and, you know, we're map are now it gives options to those customers. You know, if they want those kinds of enterprise enterprise grade features, now they have an option within EMR. It can select a M five and, and get moving if they want a performance. And in NFS, they've got the M three options. >>Well, congratulations. I think it's a great deal for you guys and for Amazon customers. My question for you is, as you guys explore the enterprise ready equation, which has been a big topic this week, um, what does that mean to you guys? Cause it means different things to different people depends on where, how high up to OLTB do you go? Right? I mean, we're how far from batch to real time transactional, um, levels you go, I mean, low bash, no problem. But as you start to get more near real time, it's going to be a little bit different gray in this house used security HDFS. Yeah. >>Yeah. So, so duke represents the strategic platform, right? Deploying that in an organization, um, you know, moving from kind of an experimental kind of lab based to production environment creates a different set of feature requirements. How available is it? How easy is it to integrate, right? How do I kind of protect that information and how do I share it? So when we say enterprise grade, we mean you can have SLA, she can put the data there and, and be confident that the data will remain there, that you can have a point in time recovery for an application error or user mistake. Uh, you can have a disaster recovery features in place. And then the integration is about not recreating the wheel to get access to the information. So Hadoop is very powerful, but it requires interacting through an HDFS API. If you can leverage it like through map bar with NFS standard file based access standard ODBC access, open it up. >>So I can use a standard file browser applications to see and manipulate the data really opens up the use cases. And then finally, what we announced in two dot oh, was multitenancy features. So as you share that information, all of a sudden the SLA is of different groups and well, these guys need it immediately. And if you've got some low grade batch jobs are going to impact that. So you want the ability to protect, to isolate, to secure information, and basically have virtual clusters within a cluster. And those features are important to cloud, but they're also important to on-premise >>So great for the hybrid cloud environments out there. I mean, the multitenancy cracking the code on that. Exactly huge. I mean, that is basically, I mean, right now most enterprises are like private cloud because it's like, they're basically extension of their data center and you're seeing a lot more activity in the hybrid cloud as a gateway to the public cloud. So, >>And, and, you know, frankly, people are kind of struggling with in an experimental with Apache Hadoop and the other distributions, the policies are either at the individual file level or the whole cluster. And it all almost forced the creation of separate physical clusters, which kind of goes against the whole Hadoop concept. So the ability to manage it, a logical layer have separate volumes where you can apply policies to apply that applies to all the content underneath really kind of makes it much, much easier for administrators to kind of deal with these multiple use cases. >>Amazon, Amazon has always been one of those cases for the enterprise where it's been one of those and they've, this has been talked about for years, put the credit card down, go play on Amazon, but then bring it back into the it group for certification. And so I think this is a nice product for you guys to bring that comfort. You know, we're very >>Excited the enterprise saying, Hey, >>Come play in Amazon. It's Bulletproof enterprise. Ready? So congratulations. >>I wonder, can we talk, uh, talk use cases. So what are you seeing in terms of, uh, evolving use cases as, as, uh, duke continues to become more enterprise grade, uh, depending on your definition, uh, but how is that impacting what you're seeing in terms of, even if it's just, uh, you know, the, the, um, the mindset even people think now, okay, now it's enterprise grade, well, maybe, you know, in, in, depending on who you talk to, it's been that way for a bit, but what kind of, uh, use cases are you seeing develop now that it's kind of starting to gain acceptance? It's like, okay, we can trust our data is going to be there, et cetera. >>So th there's a huge range of use cases that, uh, different by industry, different by kind of dataset that's being used against everything from really a deep store where you can do analytics on it. So you're selecting the content to something that's very, very analytic machine learning intensive, where you're doing sophisticated clustering algorithms, uh, et cetera, um, where we've seen kind of an expansion of use cases are around real-time streaming and you get streaming data sets that are kind of entering into the cloud. And, um, some of the more mission, critical data moving beyond just maybe click stream data or things that if you happen to drop a few, you know, not a big deal, right. Versus the kind of trust the business type of content. >>Talk a little bit about the streaming, uh, aspects, uh, because of course, you know, we think of duke, we think of a batch system in terms of streaming data into Hadoop. You know, that's, that's a different, uh, that's something we don't, we haven't heard a lot about. So how do you guys approach that? >>So, uh, one of the artifacts of, of HDFS, which is a, is a distributed file system that scores in the underlying Linux file system, it's append only. So as an administrator, you decide, how frequently do I close the file item? I going to do that an hourly basis on it every eight hours, because you have to close the file for other applications to see the data that's been written. Right? So one of the innovations that, uh, that we pursued was to rewrite that create this dynamic read-write layer. So you can continue to write data in any application is seeing the latest data that's written. So you can Mount the cluster as if it's storage and just continue to write data. There really opens up what's, uh, what's possible companies like Informatica, they're all from a messaging product integrates directly in with, with Matt BARR and provides. >>So what kind of advantage does that provide to the end user? What w w translate that into real business value? Why, why is that important? >>Well, so one example is comScore, comScore handles 30 billion, uh, objects a day, uh, as they go out and try to measure the use of, of the web and being able to continually write and stream that information and scale and handle that in a real time and do analytics and turn around data faster, has tremendous business value to them. If they're stuck in a batch environment where the load times lengthen to the point where all of a sudden they can't keep up and they're actually reporting on, you know, old news. And I think the analogy is forecasting rain a day after it's wet. Isn't exactly valuable. >>Yeah. So you guys, obviously a great deal of the enterprise ready for Amazon, big story, big coup for the company. What's next for you. I want to ask that and make sure you get that out there on your agenda for the next year, but then I want you to take a step back a year, maybe a year and a half ago. Look back at how much has changed in this landscape. Um, share your perspective because the market has gone through an evolution where there's been a market opportunity, and then everyone goes, oh my God, it's bigger than we actually thought. I mean, Jeff, Kelly's a groundbreaking report about the $50 billion market is now being talked about as too low. So big data has absolutely opened up to a huge, and it's changed some of the tactics around strategies. So your strategy, Hortonworks strategy, even cloud era. So, and it's still evolving. So what's changed for the folks out there from a year and a half ago, a year ago to today, and then look out for the next 12 months. What's on your agenda. >>Well, if, if you look back, I think we've been fairly consistent. Um, uh, I'm, I'm not going to take credit for the vision of our CEO and CTO. Uh, but they recognized early on that Hadoop was, uh, was a strategic platform and to be a strategic platform that applied to the broadest number of use cases and organizations required some, some areas, uh, of innovation and particularly the how it, how it scaled, how it was managed, how you stored and protected the information needed a rearchitecture. And I think that, you know, architecture matters when you're going through a paradigm shift, having the right one in place creates this, this ability, you know, to speed innovation. And I think that's, if there's anything that's changed, I think it's the speed of innovation has even increased in the Hadoop community. I think it's, it's created a focus on these enterprise grade features on how do we store this valuable information and, and continue to explore. >>And I think one of the observations I'll make is that on that note is that it really focuses everyone to be just mind your own business and get the products out. You know what I'm saying? We've seen everyone, the product focus be the number one conversation. >>What we've seen is customers, you know, start and they expand rapidly. Some of that student data growth, but a lot of it is student more and more applications are being delivered and, and, uh, and, and the values kind of extracted from the hoop platform and success breeds success. Well, >>Congratulations for all your success, great win with Amazon web services and make that a little bit more easier, more robust, and more, more features for them and you, uh, more revenue for part of our, um, and I want to personally thank you for your support to the cube. Uh, we've expanded with a new studio B software for extra extra interviews, um, and wanna expand the conversation, thanks to your generous support. You can bring the independent coverage out to the market and, um, great community, thanks for helping us out. And we appreciate it. So thank you. Okay. Jack Dorsey with Matt bar, we'll be right back to wrap up day one with that. Jeff and I will give our analysis right at the short break.

Published Date : Jun 14 2012

SUMMARY :

So you guys are a player in the business, so share with your news, Amazon in the cloud. So what's the value proposition. And then there's also a third application area where you can do processing of the data in Don't have to move the raw data. Well, you know, the whole, uh, you know, Hortonworks is now fully taken over the show and talk about what you see out here in terms of, uh, it was great for us. So I think, you know, talk about why Amazon and you guys is a good fit out What's the core, I guess the first comment first response would be, I think every customer I mean, you know what I mean by it's natural, it's, cloogy everywhere right now. For the data for the data component. the disaster recovery, and, you know, we're map are now it gives options to those customers. I think it's a great deal for you guys and for Amazon customers. that the data will remain there, that you can have a point in time recovery for an application error or user mistake. So as you share that information, So great for the hybrid cloud environments out there. So the ability to manage it, And so I think this is a nice product for you guys to So congratulations. So what are you seeing in terms of, uh, evolving use cases as, really a deep store where you can do analytics on it. Talk a little bit about the streaming, uh, aspects, uh, because of course, you know, we think of duke, I going to do that an hourly basis on it every eight hours, because you have to close the file for other applications actually reporting on, you know, old news. I want to ask that and make sure you get that And I think that, you know, architecture matters when you're going through a paradigm shift, And I think one of the observations I'll make is that on that note is that it really focuses everyone to be What we've seen is customers, you know, start and they expand rapidly. You can bring the independent coverage out to the market and, um, great community,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Jeff KellyPERSON

0.99+

JeffPERSON

0.99+

AmazonORGANIZATION

0.99+

Jack NorrisPERSON

0.99+

Jack DorseyPERSON

0.99+

NetflixORGANIZATION

0.99+

$50 billionQUANTITY

0.99+

Silicon valleyLOCATION

0.99+

30 billionQUANTITY

0.99+

todayDATE

0.99+

InformaticaORGANIZATION

0.99+

a year agoDATE

0.99+

next yearDATE

0.99+

comScoreORGANIZATION

0.99+

a year and a half agoDATE

0.99+

KellyPERSON

0.99+

last yearDATE

0.99+

AmazonsORGANIZATION

0.99+

LinuxTITLE

0.99+

Matt BARRPERSON

0.99+

San Jose, CaliforniaLOCATION

0.99+

one exampleQUANTITY

0.98+

one areaQUANTITY

0.97+

third applicationQUANTITY

0.97+

MattPERSON

0.97+

oneQUANTITY

0.97+

HadoopTITLE

0.97+

this weekDATE

0.96+

2012DATE

0.95+

hundreds of nodesQUANTITY

0.94+

HortonworksORGANIZATION

0.94+

JackPERSON

0.93+

both editionQUANTITY

0.93+

a dayQUANTITY

0.93+

two big announcementsQUANTITY

0.92+

secondQUANTITY

0.9+

next 12 monthsDATE

0.88+

day oneQUANTITY

0.86+

two dotQUANTITY

0.85+

M threeOTHER

0.85+

M threeTITLE

0.84+

MapReduceORGANIZATION

0.82+

Hadoop Summit 2012EVENT

0.79+

first responseQUANTITY

0.79+

every eight hoursQUANTITY

0.78+

SLATITLE

0.77+

JuneDATE

0.77+

first commentQUANTITY

0.77+

Lastic MapReduceTITLE

0.69+

M fiveOTHER

0.69+

BoeingORGANIZATION

0.68+

M fiveTITLE

0.67+

siliconangle.tvOTHER

0.67+

ground zeroQUANTITY

0.67+

Wiki bond.orgORGANIZATION

0.62+

ApacheORGANIZATION

0.61+

4th ofEVENT

0.6+