Image Title

Search Results for Johnson Space Center:

Computer Science & Space Exploration | Exascale Day


 

>>from around the globe. It's the Q. With digital coverage >>of exa scale day made possible by Hewlett Packard Enterprise. We're back at the celebration of Exa Scale Day. This is Dave Volant, and I'm pleased to welcome to great guests Brian Dance Berries Here. Here's what The ISS Program Science office at the Johnson Space Center. And Dr Mark Fernandez is back. He's the Americas HPC technology officer at Hewlett Packard Enterprise. Gentlemen, welcome. >>Thank you. Yeah, >>well, thanks for coming on. And, Mark, Good to see you again. And, Brian, I wonder if we could start with you and talk a little bit about your role. A T. I s s program Science office as a scientist. What's happening these days? What are you working on? >>Well, it's been my privilege the last few years to be working in the, uh, research integration area of of the space station office. And that's where we're looking at all of the different sponsors NASA, the other international partners, all the sponsors within NASA, and, uh, prioritizing what research gets to go up to station. What research gets conducted in that regard. And to give you a feel for the magnitude of the task, but we're coming up now on November 2nd for the 20th anniversary of continuous human presence on station. So we've been a space faring society now for coming up on 20 years, and I would like to point out because, you know, as an old guy myself, it impresses me. That's, you know, that's 25% of the US population. Everybody under the age of 20 has never had a moment when they were alive and we didn't have people living and working in space. So Okay, I got off on a tangent there. We'll move on in that 20 years we've done 3000 experiments on station and the station has really made ah, miraculously sort of evolution from, ah, basic platform, what is now really fully functioning national lab up there with, um, commercially run research facilities all the time. I think you can think of it as the world's largest satellite bus. We have, you know, four or five instruments looking down, measuring all kinds of things in the atmosphere during Earth observation data, looking out, doing astrophysics, research, measuring cosmic rays, X ray observatory, all kinds of things, plus inside the station you've got racks and racks of experiments going on typically scores, you know, if not more than 50 experiments going on at any one time. So, you know, the topic of this event is really important. Doesn't NASA, you know, data transmission Up and down, all of the cameras going on on on station the experiments. Um, you know, one of one of those astrophysics observatory's you know, it has collected over 15 billion um uh, impact data of cosmic rays. And so the massive amounts of data that that needs to be collected and transferred for all of these experiments to go on really hits to the core. And I'm glad I'm able toe be here and and speak with you today on this. This topic. >>Well, thank you for that, Bryan. A baby boomer, right? Grew up with the national pride of the moon landing. And of course, we've we've seen we saw the space shuttle. We've seen international collaboration, and it's just always been something, you know, part of our lives. So thank you for the great work that you guys were doing their mark. You and I had a great discussion about exa scale and kind of what it means for society and some of the innovations that we could maybe expect over the coming years. Now I wonder if you could talk about some of the collaboration between what you guys were doing and Brian's team. >>Uh, yeah, so yes, indeed. Thank you for having me early. Appreciate it. That was a great introduction. Brian, Uh, I'm the principal investigator on Space Born computer, too. And as the two implies, where there was one before it. And so we worked with Bryant and his team extensively over the past few years again high performance computing on board the International Space Station. Brian mentioned the thousands of experiments that have been done to date and that there are currently 50 orm or going on at any one time. And those experiments collect data. And up until recently, you've had to transmit that data down to Earth for processing. And that's a significant amount of bandwidth. Yeah, so with baseball and computer to we're inviting hello developers and others to take advantage of that onboard computational capability you mentioned exa scale. We plan to get the extra scale next year. We're currently in the era that's called PETA scale on. We've been in the past scale era since 2000 and seven, so it's taken us a while to make it that next lead. Well, 10 years after Earth had a PETA scale system in 2017 were able to put ah teraflop system on the International space station to prove that we could do a trillion calculations a second in space. That's where the data is originating. That's where it might be best to process it. So we want to be able to take those capabilities with us. And with H. P. E. Acting as a wonderful partner with Brian and NASA and the space station, we think we're able to do that for many of these experiments. >>It's mind boggling you were talking about. I was talking about the moon landing earlier and the limited power of computing power. Now we've got, you know, water, cool supercomputers in space. I'm interested. I'd love to explore this notion of private industry developing space capable computers. I think it's an interesting model where you have computer companies can repurpose technology that they're selling obviously greater scale for space exploration and apply that supercomputing technology instead of having government fund, proprietary purpose built systems that air. Essentially, you use case, if you will. So, Brian, what are the benefits of that model? The perhaps you wouldn't achieve with governments or maybe contractors, you know, kind of building these proprietary systems. >>Well, first of all, you know, any any tool, your using any, any new technology that has, you know, multiple users is going to mature quicker. You're gonna have, you know, greater features, greater capabilities, you know, not even talking about computers. Anything you're doing. So moving from, you know, governor government is a single, um, you know, user to off the shelf type products gives you that opportunity to have things that have been proven, have the technology is fully matured. Now, what had to happen is we had to mature the space station so that we had a platform where we could test these things and make sure they're gonna work in the high radiation environments, you know, And they're gonna be reliable, because first, you've got to make sure that that safety and reliability or taken care of so that that's that's why in the space program you're gonna you're gonna be behind the times in terms of the computing power of the equipment up there because, first of all and foremost, you needed to make sure that it was reliable and say, Now, my undergraduate degree was in aerospace engineering and what we care about is aerospace engineers is how heavy is it, how big and bulky is it because you know it z expensive? You know, every pound I once visited Gulfstream Aerospace, and they would pay their employees $1000 that they could come up with a way saving £1 in building that aircraft. That means you have more capacity for flying. It's on the orders of magnitude. More important to do that when you're taking payloads to space. So you know, particularly with space born computer, the opportunity there to use software and and check the reliability that way, Uh, without having to make the computer, you know, radiation resistance, if you will, with heavy, you know, bulky, um, packaging to protect it from that radiation is a really important thing, and it's gonna be a huge advantage moving forward as we go to the moon and on to Mars. >>Yeah, that's interesting. I mean, your point about cots commercial off the shelf technology. I mean, that's something that obviously governments have wanted to leverage for a long, long time for many, many decades. But but But Mark the issue was always the is. Brian was just saying the very stringent and difficult requirements of space. Well, you're obviously with space Born one. You got to the point where you had visibility of the economics made sense. It made commercial sense for companies like Hewlett Packard Enterprise. And now we've sort of closed that gap to the point where you're sort of now on that innovation curve. What if you could talk about that a little bit? >>Yeah, absolutely. Brian has some excellent points, you know, he said, anything we do today and requires computers, and that's absolutely correct. So I tell people that when you go to the moon and when you go to the Mars, you probably want to go with the iPhone 10 or 11 and not a flip phone. So before space born was sent up, you went with 2000 early two thousands computing technology there which, like you said many of the people born today weren't even around when the space station began and has been occupied so they don't even know how to program or use that type of computing. Power was based on one. We sent the exact same products that we were shipping to customers today, so they are current state of the art, and we had a mandate. Don't touch the hardware, have all the protection that you can via software. So that's what we've done. We've got several philosophical ways to do that. We've implemented those in software. They've been successful improving in the space for one, and now it's space born to. We're going to begin the experiments so that the rest of the community so that the rest of the community can figure out that it is economically viable, and it will accelerate their research and progress in space. I'm most excited about that. Every venture into space as Brian mentioned will require some computational capability, and HP has figured out that the economics air there we need to bring the customers through space ball into in order for them to learn that we are reliable but current state of the art, and that we could benefit them and all of humanity. >>Guys, I wanna ask you kind of a two part question. And, Brian, I'll start with you and it z somewhat philosophical. Uh, I mean, my understanding was and I want to say this was probably around the time of the Bush administration w two on and maybe certainly before that, but as technology progress, there was a debate about all right, Should we put our resource is on moon because of the proximity to Earth? Or should we, you know, go where no man has gone before and or woman and get to Mars? Where What's the thinking today, Brian? On that? That balance between Moon and Mars? >>Well, you know, our plans today are are to get back to the moon by 2024. That's the Artemus program. Uh, it's exciting. It makes sense from, you know, an engineering standpoint. You take, you know, you take baby steps as you continue to move forward. And so you have that opportunity, um, to to learn while you're still, you know, relatively close to home. You can get there in days, not months. If you're going to Mars, for example, toe have everything line up properly. You're looking at a multi year mission you know, it may take you nine months to get there. Then you have to wait for the Earth and Mars to get back in the right position to come back on that same kind of trajectory. So you have toe be there for more than a year before you can turn around and come back. So, you know, he was talking about the computing power. You know, right now that the beautiful thing about the space station is, it's right there. It's it's orbiting above us. It's only 250 miles away. Uh, so you can test out all of these technologies. You can rely on the ground to keep track of systems. There's not that much of a delay in terms of telemetry coming back. But as you get to the moon and then definitely is, you get get out to Mars. You know, there are enough minutes delay out there that you've got to take the computing power with you. You've got to take everything you need to be able to make those decisions you need to make because there's not time to, um, you know, get that information back on the ground, get back get it back to Earth, have people analyze the situation and then tell you what the next step is to do. That may be too late. So you've got to think the computing power with you. >>So extra scale bring some new possibilities. Both both for, you know, the moon and Mars. I know Space Born one did some simulations relative. Tomorrow we'll talk about that. But But, Brian, what are the things that you hope to get out of excess scale computing that maybe you couldn't do with previous generations? >>Well, you know, you know, market on a key point. You know, bandwidth up and down is, of course, always a limitation. In the more computing data analysis you can do on site, the more efficient you could be with parsing out that that bandwidth and to give you ah, feel for just that kind of think about those those observatory's earth observing and an astronomical I was talking about collecting data. Think about the hours of video that are being recorded daily as the astronauts work on various things to document what they're doing. They many of the biological experiments, one of the key key pieces of data that's coming back. Is that video of the the microbes growing or the plants growing or whatever fluid physics experiments going on? We do a lot of colloids research, which is suspended particles inside ah liquid. And that, of course, high speed video. Is he Thio doing that kind of research? Right now? We've got something called the I s s experience going on in there, which is basically recording and will eventually put out a syriza of basically a movie on virtual reality recording. That kind of data is so huge when you have a 360 degree camera up there recording all of that data, great virtual reality, they There's still a lot of times bringing that back on higher hard drives when the space six vehicles come back to the Earth. That's a lot of data going on. We recorded videos all the time, tremendous amount of bandwidth going on. And as you get to the moon and as you get further out, you can a man imagine how much more limiting that bandwidth it. >>Yeah, We used to joke in the old mainframe days that the fastest way to get data from point a to Point B was called C Tam, the Chevy truck access method. Just load >>up a >>truck, whatever it was, tapes or hard drive. So eso and mark, of course space born to was coming on. Spaceport one really was a pilot, but it proved that the commercial computers could actually work for long durations in space, and the economics were feasible. Thinking about, you know, future missions and space born to What are you hoping to accomplish? >>I'm hoping to bring. I'm hoping to bring that success from space born one to the rest of the community with space born to so that they can realize they can do. They're processing at the edge. The purpose of exploration is insight, not data collection. So all of these experiments begin with data collection. Whether that's videos or samples are mold growing, etcetera, collecting that data, we must process it to turn it into information and insight. And the faster we can do that, the faster we get. Our results and the better things are. I often talk Thio College in high school and sometimes grammar school students about this need to process at the edge and how the communication issues can prevent you from doing that. For example, many of us remember the communications with the moon. The moon is about 250,000 miles away, if I remember correctly, and the speed of light is 186,000 miles a second. So even if the speed of light it takes more than a second for the communications to get to the moon and back. So I can remember being stressed out when Houston will to make a statement. And we were wondering if the astronauts could answer Well, they answered as soon as possible. But that 1 to 2 second delay that was natural was what drove us crazy, which made us nervous. We were worried about them in the success of the mission. So Mars is millions of miles away. So flip it around. If you're a Mars explorer and you look out the window and there's a big red cloud coming at you that looks like a tornado and you might want to do some Mars dust storm modeling right then and there to figure out what's the safest thing to do. You don't have the time literally get that back to earth have been processing and get you the answer back. You've got to take those computational capabilities with you. And we're hoping that of these 52 thousands of experiments that are on board, the SS can show that in order to better accomplish their missions on the moon. And Omar, >>I'm so glad you brought that up because I was gonna ask you guys in the commercial world everybody talks about real time. Of course, we talk about the real time edge and AI influencing and and the time value of data I was gonna ask, you know, the real time, Nous, How do you handle that? I think Mark, you just answered that. But at the same time, people will say, you know, the commercial would like, for instance, in advertising. You know, the joke the best. It's not kind of a joke, but the best minds of our generation tryingto get people to click on ads. And it's somewhat true, unfortunately, but at any rate, the value of data diminishes over time. I would imagine in space exploration where where you're dealing and things like light years, that actually there's quite a bit of value in the historical data. But, Mark, you just You just gave a great example of where you need real time, compute capabilities on the ground. But but But, Brian, I wonder if I could ask you the value of this historic historical data, as you just described collecting so much data. Are you? Do you see that the value of that data actually persists over time, you could go back with better modeling and better a i and computing and actually learn from all that data. What are your thoughts on that, Brian? >>Definitely. I think the answer is yes to that. And, you know, as part of the evolution from from basically a platform to a station, we're also learning to make use of the experiments in the data that we have there. NASA has set up. Um, you know, unopened data access sites for some of our physical science experiments that taking place there and and gene lab for looking at some of the biological genomic experiments that have gone on. And I've seen papers already beginning to be generated not from the original experimenters and principal investigators, but from that data set that has been collected. And, you know, when you're sending something up to space and it to the space station and volume for cargo is so limited, you want to get the most you can out of that. So you you want to be is efficient as possible. And one of the ways you do that is you collect. You take these earth observing, uh, instruments. Then you take that data. And, sure, the principal investigators air using it for the key thing that they designed it for. But if that data is available, others will come along and make use of it in different ways. >>Yeah, So I wanna remind the audience and these these these air supercomputers, the space born computers, they're they're solar powered, obviously, and and they're mounted overhead, right? Is that is that correct? >>Yeah. Yes. Space borne computer was mounted in the overhead. I jokingly say that as soon as someone could figure out how to get a data center in orbit, they will have a 50 per cent denser data station that we could have down here instead of two robes side by side. You can also have one overhead on. The power is free. If you can drive it off a solar, and the cooling is free because it's pretty cold out there in space, so it's gonna be very efficient. Uh, space borne computer is the most energy efficient computer in existence. Uh, free electricity and free cooling. And now we're offering free cycles through all the experimenters on goal >>Eso Space born one exceeded its mission timeframe. You were able to run as it was mentioned before some simulations for future Mars missions. And, um and you talked a little bit about what you want to get out of, uh, space born to. I mean, are there other, like, wish list items, bucket bucket list items that people are talking about? >>Yeah, two of them. And these air kind of hypothetical. And Brian kind of alluded to them. Uh, one is having the data on board. So an example that halo developers talk to us about is Hey, I'm on Mars and I see this mold growing on my potatoes. That's not good. So let me let me sample that mold, do a gene sequencing, and then I've got stored all the historical data on space borne computer of all the bad molds out there and let me do a comparison right then and there before I have dinner with my fried potato. So that's that's one. That's very interesting. A second one closely related to it is we have offered up the storage on space borne computer to for all of your raw data that we process. So, Mr Scientist, if if you need the raw data and you need it now, of course, you can have it sent down. But if you don't let us just hold it there as long as they have space. And when we returned to Earth like you mentioned, Patrick will ship that solid state disk back to them so they could have a new person, but again, reserving that network bandwidth, uh, keeping all that raw data available for the entire duration of the mission so that it may have value later on. >>Great. Thank you for that. I want to end on just sort of talking about come back to the collaboration between I S s National Labs and Hewlett Packard Enterprise, and you've got your inviting project ideas using space Bourne to during the upcoming mission. Maybe you could talk about what that's about, and we have A We have a graphic we're gonna put up on DSM information that you can you can access. But please, mark share with us what you're planning there. >>So again, the collaboration has been outstanding. There. There's been a mention off How much savings is, uh, if you can reduce the weight by a pound. Well, our partners ice s national lab and NASA have taken on that cost of delivering baseball in computer to the international space station as part of their collaboration and powering and cooling us and giving us the technical support in return on our side, we're offering up space borne computer to for all the onboard experiments and all those that think they might be wanting doing experiments on space born on the S s in the future to take advantage of that. So we're very, very excited about that. >>Yeah, and you could go toe just email space born at hp dot com on just float some ideas. I'm sure at some point there'll be a website so you can email them or you can email me david dot volonte at at silicon angle dot com and I'll shoot you that that email one or that website once we get it. But, Brian, I wanna end with you. You've been so gracious with your time. Uh, yeah. Give us your final thoughts on on exa scale. Maybe how you're celebrating exa scale day? I was joking with Mark. Maybe we got a special exa scale drink for 10. 18 but, uh, what's your final thoughts, Brian? >>Uh, I'm going to digress just a little bit. I think I think I have a unique perspective to celebrate eggs a scale day because as an undergraduate student, I was interning at Langley Research Center in the wind tunnels and the wind tunnel. I was then, um, they they were very excited that they had a new state of the art giant room size computer to take that data we way worked on unsteady, um, aerodynamic forces. So you need a lot of computation, and you need to be ableto take data at a high bandwidth. To be able to do that, they'd always, you know, run their their wind tunnel for four or five hours. Almost the whole shift. Like that data and maybe a week later, been ableto look at the data to decide if they got what they were looking for? Well, at the time in the in the early eighties, this is definitely the before times that I got there. They had they had that computer in place. Yes, it was a punchcard computer. It was the one time in my life I got to put my hands on the punch cards and was told not to drop them there. Any trouble if I did that. But I was able thio immediately after, uh, actually, during their run, take that data, reduce it down, grabbed my colored pencils and graph paper and graph out coefficient lift coefficient of drag. Other things that they were measuring. Take it back to them. And they were so excited to have data two hours after they had taken it analyzed and looked at it just pickled them. Think that they could make decisions now on what they wanted to do for their next run. Well, we've come a long way since then. You know, extra scale day really, really emphasizes that point, you know? So it really brings it home to me. Yeah. >>Please, no, please carry on. >>Well, I was just gonna say, you know, you talked about the opportunities that that space borne computer provides and and Mark mentioned our colleagues at the I S s national lab. You know, um, the space station has been declared a national laboratory, and so about half of the, uh, capabilities we have for doing research is a portion to the national lab so that commercial entities so that HP can can do these sorts of projects and universities can access station and and other government agencies. And then NASA can focus in on those things we want to do purely to push our exploration programs. So the opportunities to take advantage of that are there marks opening up the door for a lot of opportunities. But others can just Google S s national laboratory and find some information on how to get in the way. Mark did originally using s national lab to maybe get a good experiment up there. >>Well, it's just astounding to see the progress that this industry is made when you go back and look, you know, the early days of supercomputing to imagine that they actually can be space born is just tremendous. Not only the impacts that it can have on Space six exploration, but also society in general. Mark Wayne talked about that. Guys, thanks so much for coming on the Cube and celebrating Exa scale day and helping expand the community. Great work. And, uh, thank you very much for all that you guys dio >>Thank you very much for having me on and everybody out there. Let's get the XO scale as quick as we can. Appreciate everything you all are >>doing. Let's do it. >>I've got a I've got a similar story. Humanity saw the first trillion calculations per second. Like I said in 1997. And it was over 100 racks of computer equipment. Well, space borne one is less than fourth of Iraq in only 20 years. So I'm gonna be celebrating exa scale day in anticipation off exa scale computers on earth and soon following within the national lab that exists in 20 plus years And being on Mars. >>That's awesome. That mark. Thank you for that. And and thank you for watching everybody. We're celebrating Exa scale day with the community. The supercomputing community on the Cube Right back

Published Date : Oct 16 2020

SUMMARY :

It's the Q. With digital coverage We're back at the celebration of Exa Scale Day. Thank you. And, Mark, Good to see you again. And to give you a feel for the magnitude of the task, of the collaboration between what you guys were doing and Brian's team. developers and others to take advantage of that onboard computational capability you with governments or maybe contractors, you know, kind of building these proprietary off the shelf type products gives you that opportunity to have things that have been proven, have the technology You got to the point where you had visibility of the economics made sense. So I tell people that when you go to the moon Or should we, you know, go where no man has gone before and or woman and You've got to take everything you need to be able to make those decisions you need to make because there's not time to, for, you know, the moon and Mars. the more efficient you could be with parsing out that that bandwidth and to give you ah, B was called C Tam, the Chevy truck access method. future missions and space born to What are you hoping to accomplish? get that back to earth have been processing and get you the answer back. the time value of data I was gonna ask, you know, the real time, And one of the ways you do that is you collect. If you can drive it off a solar, and the cooling is free because it's pretty cold about what you want to get out of, uh, space born to. So, Mr Scientist, if if you need the raw data and you need it now, that's about, and we have A We have a graphic we're gonna put up on DSM information that you can is, uh, if you can reduce the weight by a pound. so you can email them or you can email me david dot volonte at at silicon angle dot com and I'll shoot you that state of the art giant room size computer to take that data we way Well, I was just gonna say, you know, you talked about the opportunities that that space borne computer provides And, uh, thank you very much for all that you guys dio Thank you very much for having me on and everybody out there. Let's do it. Humanity saw the first trillion calculations And and thank you for watching everybody.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
BrianPERSON

0.99+

MarkPERSON

0.99+

Mark WaynePERSON

0.99+

BryanPERSON

0.99+

NASAORGANIZATION

0.99+

1997DATE

0.99+

MarsLOCATION

0.99+

BryantPERSON

0.99+

EarthLOCATION

0.99+

Dave VolantPERSON

0.99+

£1QUANTITY

0.99+

Hewlett Packard EnterpriseORGANIZATION

0.99+

360 degreeQUANTITY

0.99+

3000 experimentsQUANTITY

0.99+

2017DATE

0.99+

twoQUANTITY

0.99+

PatrickPERSON

0.99+

five hoursQUANTITY

0.99+

nine monthsQUANTITY

0.99+

November 2ndDATE

0.99+

HPORGANIZATION

0.99+

25%QUANTITY

0.99+

TomorrowDATE

0.99+

I S s National LabsORGANIZATION

0.99+

50 per centQUANTITY

0.99+

next yearDATE

0.99+

20 yearsQUANTITY

0.99+

iPhone 10COMMERCIAL_ITEM

0.99+

fourQUANTITY

0.99+

2024DATE

0.99+

1QUANTITY

0.99+

todayDATE

0.99+

earthLOCATION

0.99+

a week laterDATE

0.99+

two partQUANTITY

0.99+

OmarPERSON

0.99+

2000DATE

0.99+

Thio CollegeORGANIZATION

0.99+

11COMMERCIAL_ITEM

0.99+

more than a secondQUANTITY

0.99+

10. 18QUANTITY

0.99+

one timeQUANTITY

0.99+

2 secondQUANTITY

0.99+

BothQUANTITY

0.99+

over 100 racksQUANTITY

0.98+

Sam Blackman, AWS Elemental & Tracy Caldwell Dyson, NASA | NAB Show 2017


 

>> Live from Las Vegas it's The Cube covering NAB 2017. Brought to you by HGST. >> Welcome back to The Cube. We are live at NAB 2017. I'm Lisa Martin. Very, very excited, kind of geeking out right now to be joined by our next two guests. Sam Blackman, the co-founder and CEO of AWS Elemental, welcome to The Cube. >> Sam: Thank you so much. >> And we have NASA astronaut, Tracy Caldwell Dyson. Both of you, welcome to The Cube. >> Thank you. >> Today has been a very historic day for technology and space. This was the first ever live 4k video stream that happened between you on Earth, Sam, and Doctor Peggy Whitson, aboard the International Space Station. >> Sam: Yes. >> Wow. Tell us about that. >> It was truly amazing to be part of history and the amount of technology that came into play to make this possible. You know, sitting in the conference room in NAB in the middle of Las Vegas, seeing astronauts 250 miles ahead, going around the Earth, 17,000 miles an hour and a seamless, beautiful 4k picture. It was mind blowing. Hard to believe it's happened still. >> I can't even imagine. I'm getting goosebumps for you. Tell us some of the things that Dr. Whitson shared about her experiences. What was the interaction like? >> Well, Commander Whitson and Colonel Fisher was also in the interview and that guy is hilarious, by the way. >> Yeah, he is. >> He is hilarious. They talked about how advanced imaging technology really helps NASA perform experiments and bring experiments that are happening on the space station down to Earth for researchers to use that data and discover how the world works inside the universe. Some of the really interesting examples revolved around some experiments they showed. With thin film technology they had a very small, metallic structure that they could pull water out of and then corral that water, convert it into a spherical shape and in the 4k resolution, you could just see every element of that thin film in a way that looked like it was right next to us. I mean, it was transformative. >> Tracy: Yeah. >> I bet it was. Well, speaking of transformative, this was, I mentioned, a really historic event for a number of reasons. Obviously, for those of us on the ground, for AWS Elemental. But, Tracy, from your perspective, you've been in space for 188... I had it here somewhere, hours. >> Yeah, days. >> You've been on STS118, you've been on the Soyuz to the station on expeditions 23 and 24. What does this capability now mean in the life of an astronaut? >> I think what it does is it helps us bring the experience to everybody here on Earth. It is so hard to capture what we are not just seeing, but experiencing. The richness, the detail, the vividness of the colors and how they're changing are all a part of looking at our beautiful planet. And just from that alone, being able to bring that to the American people, the world, really, is, I think to me a great relief. Because it grieves me to think about how in the world I would describe this beautiful, magnificent view to everybody back home. >> I can imagine. You've done extra-vehicular space walks. >> Tracy: Yes. >> And I can imagine it's indescribable. >> It is. And from the fact you're looking at our planet from 250 miles above, you see the curvature of the Earth, you see it moving at a super high speed, you don't feel the wind in your face, but there's no doubt you're traveling very fast. Just the fact that you are out in the vacuum of space. If you could bring parts of that experience to people back home ... I'm excited to think about how that would transform just the way people think, not to mention the way that they act towards our planet. >> I also think inspiration ... We were talking before we went on that you were about 14 when the Challenger incident happened, we all kind of remember exactly where we were, and that really, a teacher being in space was so inspirational to you. Can you imagine shifting the conversation and what this technology is able to do inspiring the next generation of people that want to be the next Tracy Caldwell Dyson? >> Well, I think what the technology does today, especially in imaging capabilities, is it provides so much more detail than I could even describe. That a young person today watching that, and our generation today is so visual, that they're going to pick up on things that I wouldn't even think to describe to them. And it's going to capture their imagination in ways that are astounding. Compared to I, who, just the sheer knowledge of knowing there was a teacher that was going into space, propelled me to work really hard. I can only imagine what this generation's going to be capable of because of the images that we're bringing to them. >> It's so exciting. Sam, this is really kind of the tip of the iceberg. From AWS Elemental's perspective, first of all, you just had a rebrand. But what does this mean for the future of the video ecosystem? >> Well, I think it really shows you how the technology components came come together to create unbelievable pictures no matter where you are on the planet or in space. We had a live 4k encoder on the space station itself sending down signals to Johnson Space Center, then Johnson Space Center sending redundant links to Las Vegas, here, and the convention center. And then processing the video, the interview with Tracy, here in the space center-- or, here in NAB and then using the cloud to distribute that all over the world. So these 4k images, which take a significant amount of bandwidth, can be created in space, delivered here, produced and delivered anywhere in the world using the power of the cloud and advanced networking technology. And that's pretty amazing, when you think about it. >> Lisa: It really is. I don't think the three of us are smiling big enough. >> I know. It hurts! >> There's so much relief in this face. >> Lisa: I can imagine >> I bet. >> I absolutely can imagine, I think. One of the cool things about-- This is our first time at NAB with The Cube, but we're here: Media, entertainment, Hollywood. What this shows is this transcendence of technology to space. And there's so much interest in space. In fact, Tracy, you were an advisor to Jessica Chastain on "The Martian," which is probably pretty exciting. >> Oh, absolutely. It is. >> But just the transcendence of that and how this technology can be used to power things that everybody can understand, movies and things. But also the future of space exploration, which I can imagine, right now in the era of the space shuttle being retired now, depending on Soyuz rockets to get to the space station as the next vehicle is delivered, this must be quite inspirational for you as an astronaut, as not only is the next vehicle in development, but also, the exploration of Mars. In fact, you were just last month with President Trump. >> Tracy: Yes. >> As they signed a bill. What are your thoughts about that and how do you see imaging technology being an instrumental part of Mars exploration? >> In so many ways, but at the top is the momentum. Like you said, with Hollywood has captured space in some real endearing ways. And the images from NASA, from the human space flight program to Hubble to deep space, it is propelling ... it's momentum. And I think we need that momentum, especially with our young folks because they're going to be the ones, let's face it, who are going to be in the best condition to be on the planet of Mars. So, if we can continue to feed them the images as lifelike as we can, so that they feel they're there, I think we are heading in the right direction to actually being there. >> Wow, fantastic! Congratulations to both of you. Thank you both so much for joining us on The Cube. We can't wait to see what's next. >> Sam: Thank you so much. >> Tracy: Thank you. Thank you. >> Well, for Tracy and Sam, I'm Lisa Martin. You've been watching The Cube live from NAB 2017. Stick around, we'll be right back. (funky music)

Published Date : Apr 26 2017

SUMMARY :

Brought to you by HGST. Sam Blackman, the co-founder and CEO of AWS Elemental, And we have NASA astronaut, Tracy Caldwell Dyson. aboard the International Space Station. Tell us about that. and the amount of technology that came into play I can't even imagine. also in the interview and that guy is hilarious, and in the 4k resolution, you could just see I had it here somewhere, hours. in the life of an astronaut? And just from that alone, being able to bring that I can imagine. Just the fact that you are out in the vacuum of space. the next generation of people that want to be that they're going to pick up on things you just had a rebrand. to create unbelievable pictures no matter where you are I don't think the three of us are smiling big enough. I know. One of the cool things about-- It is. But also the future of space exploration, and how do you see imaging technology being from the human space flight program to Hubble to deep space, Congratulations to both of you. Thank you. Well, for Tracy and Sam, I'm Lisa Martin.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
TracyPERSON

0.99+

Jessica ChastainPERSON

0.99+

SamPERSON

0.99+

Lisa MartinPERSON

0.99+

Sam BlackmanPERSON

0.99+

NASAORGANIZATION

0.99+

EarthLOCATION

0.99+

Las VegasLOCATION

0.99+

WhitsonPERSON

0.99+

Tracy Caldwell DysonPERSON

0.99+

The MartianTITLE

0.99+

threeQUANTITY

0.99+

LisaPERSON

0.99+

Johnson Space CenterORGANIZATION

0.99+

250 milesQUANTITY

0.99+

bothQUANTITY

0.99+

BothQUANTITY

0.99+

AWS ElementalORGANIZATION

0.99+

first timeQUANTITY

0.99+

NAB 2017EVENT

0.99+

MarsLOCATION

0.99+

OneQUANTITY

0.98+

17,000 miles an hourQUANTITY

0.98+

last monthDATE

0.98+

todayDATE

0.98+

firstQUANTITY

0.98+

Peggy WhitsonPERSON

0.98+

NAB Show 2017EVENT

0.98+

TodayDATE

0.97+

HollywoodORGANIZATION

0.97+

NABEVENT

0.97+

The CubeTITLE

0.96+

SoyuzCOMMERCIAL_ITEM

0.95+

188QUANTITY

0.94+

two guestsQUANTITY

0.93+

4kQUANTITY

0.9+

Challenger incidentEVENT

0.85+

HGSTDATE

0.85+

STS118COMMERCIAL_ITEM

0.84+

CommanderPERSON

0.83+

The CubeORGANIZATION

0.83+

DoctorPERSON

0.82+

about 14QUANTITY

0.79+

President TrumpPERSON

0.77+

4k imagesQUANTITY

0.75+

Dr.PERSON

0.69+

Colonel FisherPERSON

0.66+

The CubeCOMMERCIAL_ITEM

0.65+

4k videoQUANTITY

0.64+

Space StationLOCATION

0.62+

AmericanOTHER

0.53+

InternationalCOMMERCIAL_ITEM

0.49+