Image Title

Search Results for Jennifer Prendki:

Jennifer Prendki, Atlassian | WiDS 2018


 

>> Narrator: Live from Stanford University in Palo Alto California, it's theCUBE, covering Women in Data Science Conference 2018. Brought to you by Stanford. >> Back to the cube, our continuing coverage of Women in Data Science 2018 continues. I am Lisa Martin, live from Stanford University. We have had a great array of guests this morning, from speakers, panelists, as well as attendees. This is an incredible one day technical event, and we're very excited to be joined by one of the panelists on the career panel this afternoon, Dr. Jennifer Prendki, the Head of Data Science at Atlassian. Welcome to theCUBE. >> Hi, it's my pleasure to be here. >> It's exciting to have you here. >> So you lead all search and machine learning initiatives at Atlassian, but you were telling me something interesting about your team, tell us about that. >> The interesting thing about my team is even though I'm the Head of Data Science, my team is not 100% data scientists. The belief of the company is that we really wanted to be in charge of our own destiny and be able to deploy our models ourselves and not be depending on other people to make deployment faster. >> Was that one of the interesting kind of culture elements that attracted you last year to Atlassian? >> What is really interesting about Atlassian, it's definitely a company that create products that I would say virtually every single software company in the world is using. They have a very strong software engineering culture, and so last year they decided to embrace data science. I thought it was a very interesting challenge for me to try and infuse a little bit of my passion for data and data-driven est to the company. >> You had quite a fast ramp at Atlassian. You joined last summer, and in less than six months, you grew your team of data scientists and engineers from three people to fifteen, and it gets better, in less than six months, across three locations, Mountain View, San Francisco, and Sydney. What were some of the key things for you that led you to make that impact so quickly? >> I think most data scientists on the world are interested in making an impact, and this is a company that obviously does a lot of impact, and a lot of people talk about this company, and there is obviously a lot of interesting data, and so I think one of the amazing things is that we have a very important role to play, because we are in a position where we have data related to the way people work with each other, collaborate with each other, and this is a very unique data set, so it's usually pretty easy to attract people to Atlassian. >> You mentioned collaboration, and that's certainly an undertone here at WiDS. In its third year, you were here last year as an attendee, now you're here this year as a speaker. They've grown this event dramatically in a couple of years alone. The opportunity to reach, they're expecting, a hundred thousand, to engage. It's a hundred and seventy-seven regional events, Margot Gerritsen gave us that number about an hour ago, in fifty-three countries. What is it about WiDS that attracted you, not only back, this year, but to welcome the opportunity to be on this career panel? >> I'll actually tell you something, so, we talk about diversity, and I think people usually think of diversity as meeting some kind of racial bar, to have, equality between male and female, or specific minorities. I think people tend to forget that the real diversity is diversity of thought, and so I actually found out that the very data science job I actually got, I was actually the only person who had a background in applied math, and everybody else was coming from a background in computer science. I quickly realized that I'm the only person who is really trained to push for, let's validate our models really properly, etc., and so that made realize how important that is to have a lot of diversity. I think WiDS is definitely a place where you see lots of women interested in the same thing, but coming from different perspective, different horizons, at different levels, and this is really something unique in the industry. >> Diversity of thought, I love that. I've not heard that before, I'm going to use that, but I'll give you credit for it. That is one of the things that is so, the more people we speak to, not just at WiDS, but at events like this on theCUBE, you hear, there's still such a need, obviously, the scale of which that WiDS has grown, shows clear demand for, we need more awareness that this diversity is missing, but in the fact that data science is so horizontal, across every industry, and it sort of is blurring the boundaries between rigid job roles, doctor, lawyer, attorney, teacher, whatever. This is quite pervasive and it provides the opportunity for data scientists globally to be able to make massive impact, but also, it still, as Margot Gerritsen was sharing earlier, it still requires what you said is that diversity in thought because having a particular small set of perspectives evaluating data, you think about it from an enterprise perspective, the types of companies that Atlassian deals with, and they are looking to grow and expand and launch new business models, but if the thought diversity is narrow, there's probably a lot of opportunity that is never going to be discovered. One of the things also I found interesting in your background, was that you found yourself sort of at this interesting juxtaposition of being a mentor, and going, wait a minute, this now gives you a great opportunity, but it also comes with some overhead. You've got it from a management perspective. What is that sort of crossroads that you've found yourself reaching and what have you done with that? >> I think it's true of probably every single technical role, but maybe data science more than others, you have to be technical to be part of the story. I think people need to have a leader that they can relate to and I think it's very important that you're still part of this. It's particularly interesting for data science, because data science is a field that moves so quickly. Usually you have people moving on to data science manager positions after being in IC and so if you don't make a conscious effort to remain that technical point of contact person, that people trust and people go to, then, when I think back of the technologies that were trendy when I was still in IC compared to now, it's really important for the managers to be still aware of that, to do a good job as a mentor and as a leader. >> You also said something I think before we went live, that is an important element for the women that WiDS is aiming to inspire and educate, today. Those that are new to the field or thinking about it, as well as those who've been it for a while. There is not just getting there, and going yes I'm interested, this is my passion, I want to have a career in this, it's also having to learn how to be a female leader, and you mentioned from a management perspective, you got to learn, you have to know how to be assertive. Tell us a little bit about the trials and tribulations that you have encountered in that respect. >> That's a very interesting question, because I'm actually very happy to see that nowadays, it's becoming easier and easier for women to step into individual contributor positions, because I think that people realize now that a woman can do just as good a job as men for a defined position, but when you're actually in a leadership position, you have to step into like a thought leadership role. Basically, you sometimes have to be in a meeting where you only have all the male engineers or male data scientists over there and say, you know what, I disagree with you, right? This as a woman becomes a little bit challenging because following the processes that are already in place, I believe that people have realized that it's okay for a woman to do that, but then being the assertive person that goes against the flow and says you are not thinking about it the right way, might sometimes be a problem, because women are not being perceived as creatures that are naturally assertive. It's typical for people, like a Head of Data Science, female data scientists, to be in a situation where they are perceived as being maybe a little bit aggressive or a little bit pushy, and you sometimes fall into this old saying, "he's the boss, she's bossy," kind of thing, and that is a challenge. >> I had someone once tell me a couple years ago, and I'm in tech as well, that I was pushy, and I think this was a language barrier thing, I think he meant to say persistent, but on that front, tell me a little bit more about your team of data scientists and engineers, and the females on your team, how do you help coach them to embrace, it's okay to speak your mind? What's that been like for you? >> I would say I was actually pretty soft-spoken myself. At some point I realized that public speaking actually helped me out there. Somebody at some point told me like, you should go, you're a brilliant, technical like go speak at a conference, and then I realized people are listening to me. You always have a little bit of like imposter syndrome kind of problem as a woman, so it helped me overcome this. Now I'm kind of trained to stimulate the ladies on my group to do the same thing, because that has worked really well for me I think. You have to get outside your comfort zone, and try to, things that help you have the self-confidence for you to get to the level of assertiveness you need to become successful. >> Exactly right, we've had a number of women on the show, today alone, talk about getting outside of your comfort zone, and one of my mentors always says, get comfortably uncomfortable. That's not an easy thing to achieve, but I think you walk in the door at WiDS, and you instantly feel inspired, and empowered. I think a number of the women that we've had on today, already, have talked about having, sort of being charged as a mentor with the responsibility like you just said, of helping those that are following your footsteps, to maybe understand how to have that confidence, and then have that right balance, so that there's professionalism there, there's respect, but it's not just about getting them into the field. It's about teaching them how to, once you're there, how to navigate a career path that is successful. >> That's an interesting thought, because I actually believe that getting comfortable with the uncomfortable is definitely something that data science is about, because you have new technologies, you have new models, you have lateral moves, like I actually was in the advertising industry as a data scientist, before switching to e-commerce and then eventually to the software industry, so I think that people who are trained to be data scientists are like that, and they should also be comfortable with the uncomfortable in their daily lives. >> Yeah, so you were mentioning before we went on that some of the people that you work with are like, it's my hope and dream to be at WiDS next year. What are some of the things that you've heard as we're at the halfway mark of WiDS today, that you're going to go back and share with your team, as well as maybe your friends, other females that are working in STEM fields as well? >> I would say, last year I was here just listening to all the people and whatever. This year, I'm on the panel, so I mean, I'm just like, nothing is impossible, I think. We've proven that over and over again in data science, I mean, who would have thought that ten years ago, we would be at the level of understanding of artificial intelligence and the entire field, right? It's all about waiting and seeing what the future has to bring to you, and we have all these amazing women today, to actually show us that, it's possible to get there, and it's exciting to be here. >> It is possible, and it's exciting. Well, Jennifer, thanks so much for carving out some of your time today to speak with us. We wish you continued success at Atlassian and we look forward to seeing you back at WiDS next year. >> Thank you. >> We want to thank you for watching theCUBE, we're live at Stanford University at the third annual Women in Data Science Conference, hashtag WiDS2018, join the conversation. I'll be right back with my next guest after a short break. (upbeat music)

Published Date : Mar 5 2018

SUMMARY :

Brought to you by Stanford. of the panelists on the career panel this afternoon, at Atlassian, but you were telling me something interesting in charge of our own destiny and be able to deploy for data and data-driven est to the company. you grew your team of data scientists and engineers and a lot of people talk about this company, What is it about WiDS that attracted you, not only back, I think people tend to forget that the real diversity a lot of opportunity that is never going to be discovered. it's really important for the managers to be still Those that are new to the field or thinking about it, that goes against the flow and says you are not thinking and try to, things that help you have the but I think you walk in the door at WiDS, because you have new technologies, you have new models, that some of the people that you work with to all the people and whatever. and we look forward to seeing you back at WiDS next year. We want to thank you for watching theCUBE,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Lisa MartinPERSON

0.99+

JenniferPERSON

0.99+

Margot GerritsenPERSON

0.99+

Jennifer PrendkiPERSON

0.99+

last yearDATE

0.99+

AtlassianORGANIZATION

0.99+

SydneyLOCATION

0.99+

three peopleQUANTITY

0.99+

San FranciscoLOCATION

0.99+

less than six monthsQUANTITY

0.99+

one dayQUANTITY

0.99+

100%QUANTITY

0.99+

last summerDATE

0.99+

next yearDATE

0.99+

This yearDATE

0.99+

Palo Alto CaliforniaLOCATION

0.99+

Mountain ViewLOCATION

0.99+

this yearDATE

0.99+

todayDATE

0.99+

StanfordORGANIZATION

0.99+

WiDSORGANIZATION

0.99+

ten years agoDATE

0.99+

WiDS2018EVENT

0.98+

oneQUANTITY

0.98+

fifty-three countriesQUANTITY

0.98+

Stanford UniversityORGANIZATION

0.97+

fifteenQUANTITY

0.97+

OneQUANTITY

0.97+

Women in Data Science 2018EVENT

0.96+

WiDS 2018EVENT

0.96+

a hundred and seventy-seven regional eventsQUANTITY

0.95+

Women in Data Science Conference 2018EVENT

0.95+

Women in Data Science ConferenceEVENT

0.94+

WiDSEVENT

0.94+

three locationsQUANTITY

0.93+

a hundred thousandQUANTITY

0.92+

an hour agoDATE

0.9+

this afternoonDATE

0.89+

this morningDATE

0.84+

couple years agoDATE

0.82+

one of the panelistsQUANTITY

0.81+

third yearQUANTITY

0.81+

third annualEVENT

0.79+

Stanford UniversityLOCATION

0.78+

single technical roleQUANTITY

0.68+

aboutDATE

0.67+

single softwareQUANTITY

0.61+