Image Title

Search Results for Evita Davis:

Sabita Davis and Patrick Zeimet | Io-Tahoe Adaptive Data Governance


 

>>from around the globe. It's the Cube presenting adaptive data governance brought >>to you by >>Iota Ho. In this next segment, we're gonna be talking to you about getting to know your data. And specifically you're gonna hear from two folks at Io Tahoe. We've got enterprise account execs Evita Davis here, as well as Enterprise Data engineer Patrick Simon. They're gonna be sharing insights and tips and tricks for how you can get to know your data and quickly on. We also want to encourage you to engage with Sabina and Patrick. Use the chat feature to the right, send comments, questions or feedback so you can participate. All right, Patrick Sabetta, take it away. All right. >>Thanks, Lisa. Great to be here as Lisa mentioned guys. I'm the enterprise account executive here in Ohio. Tahoe you Pat? >>Yeah. Hey, everyone so great to be here. A said My name's Patrick Samit. I'm the enterprise data engineer here at Iota Ho. And we're so excited to be here and talk about this topic as one thing we're really trying to perpetuate is that data is everyone's business. >>I couldn't agree more, Pat. So, guys, what patent? I patent. I've actually had multiple discussions with clients from different organizations with different roles. So we spoke with both your technical and your non technical audience. So while they were interested in different aspects of our platform, we found that what they had in common was they wanted to make data easy to understand and usable. So that comes back. The pats point off being everybody's business because no matter your role, we're all dependent on data. So what Pan I wanted to do today was wanted toe walk. You guys through some of those client questions, slash pain points that we're hearing from different industries and different roles and demo how our platform here, like Tahoe, is used for automating those, uh, automating Dozier related tasks. So with that said, are you ready for the first one, Pat? >>Yeah, Let's do it. >>Great. So I'm gonna put my technical hat on for this one, So I'm a data practitioner. I just started my job. ABC Bank. I have over 100 different data sources. So I have data kept in Data Lakes, legacy data, sources, even the cloud. So my issue is I don't know what those data sources hold. I don't know what data sensitive, and I don't even understand how that data is connected. So how can I talk to help? >>Yeah, I think that's a very common experience many are facing and definitely something I've encountered in my past. Typically, the first step is to catalog the data and then start mapping the relationships between your various data stores. Now, more often than not, this has tackled through numerous meetings and a combination of Excel and something similar to video, which are too great tools in their own part. But they're very difficult to maintain. Just due to the rate that we are creating data in the modern world. It starts to beg for an idea that can scale with your business needs. And this is where a platform like Io Tahoe becomes so appealing. You can see here visualization of the data relationships created by the I Ho Tahoe service. Now, what is fantastic about this is it's not only laid out in a very human and digestible format in the same action of creating this view, the data catalog was constructed. >>Um, So is the data catalog automatically populated? Correct. Okay, so So what? I'm using iota. Hope at what I'm getting is this complete, unified automated platform without the added cost, of course. >>Exactly. And that's at the heart of Iota Ho. A great feature with that data catalog is that Iota Ho will also profile your data as it creates the catalog, assigning some meaning to those pesky column Underscore ones and custom variable underscore tents that are always such a joy to deal with. Uh, now, by leveraging this interface, we can start to answer the first part of your question and understand where the core relationships within our data exists. Personally, I'm a big fan of this >>view, >>as it really just helps the i b naturally John to these focal points that coincide with these key columns following that train of thought. Let's examine the customer I D column that seems to be at the center of a lot of these relationships. We can see that it's a fairly important column as it's maintaining the relationship between at least three other tables. Now you notice all the connectors are in this blue color. This means that their system defined relationships. But I hope Tahoe goes that extra mile and actually creates thes orange colored connectors as well. These air ones that are machine learning algorithms have predicted to be relationships. Uh, and you can leverage to try and make new and powerful relationships within your data. So I hope that answers the first part of your question. >>Eso So this is really cool. And I can see how this could be leverage quickly. Now. What if I added new data sources or your multiple data sources and needed toe? Identify what data sensitive. Can I Oh, Tahoe, Detect that. >>Yeah, definitely. Within the i o ta platform. There already over 300 pre defined policies such as HIPAA, ferpa, C, c, p, a and the like. One can choose which of these policies to run against their data along for flexibility and efficiency and running the policies that affect organization. >>Okay, so so 300 is an exceptional number. I'll give you that. But what about internal policies that apply to my organization? Is there any ability for me to write custom policies? >>Yeah, that's no issue. And is something that clients leverage fairly often to utilize this function when simply has to write a rejects that our team has helped many deploy. After that, the custom policy is stored for future use to profile sensitive data. One then selects the data sources they're interested in and select the policies that meet your particular needs. The interface will automatically take your data according to the policies of detects, after which you can review the discoveries confirming or rejecting the tagging. All of these insights are easily exported through the interface, so one can work these into the action items within your project management systems. And I think this lends to the collaboration as a team can work through the discovery simultaneously. And as each item is confirmed or rejected, they can see it ni instantaneously. All this translates to a confidence that with iota how you can be sure you're in compliance. >>Um, so I'm glad you mentioned compliance because that's extremely important to my organization. >>So >>what you're saying when I use the eye a Tahoe automated platform, we'd be 90% more compliant that before were other than if you were going to be using a human. >>Yeah, definitely. The collaboration and documentation that the iota ho interface lends itself to can really help you build that confidence that your compliance is sound. >>Does >>that answer your question about sense of data? >>Definitely so. So path. I have the next question for you. So we're planning on migration on guy. Have a set of reports I need to migrate. But what I need to know is that well, what what data sources? Those report those reports are dependent on and what's feeding those tables? >>Yeah, it's a fantastic questions to be toe identifying critical data elements, and the interdependencies within the various databases could be a time consuming but vital process and the migration initiative. Luckily, Iota Ho does have an answer, and again, it's presented in a very visual format. >>So what I'm looking at here is my entire day landscape. >>Yes, exactly. >>So let's say I add another data source. I can still see that Unified 3 60 view. >>Yeah, One feature that is particularly helpful is the ability to add data sources after the data lineage. Discovery has finished along for the flexibility and scope necessary for any data migration project. If you only need need to select a few databases or your entirety, this service will provide the answers. You're looking for this visual representation of the connectivity makes the identification of critical data elements a simple matter. The connections air driven by both system defined flows as well as those predicted by our algorithms, the confidence of which, uh can actually be customized to make sure that they're meeting the needs of the initiative that you have in place. Now, this also provides tabular output in case you need it for your own internal documentation or for your action items, which we can see right here. Uh, in this interface, you can actually also confirm or deny the pair rejection the pair directions along to make sure that the data is as accurate as possible. Does that help with your data lineage needs? >>Definitely. So So, Pat, My next big question here is So now I know a little bit about my data. How do I know I can trust it? So what I'm interested in knowing really is is it in a fit state for Meteo use it? Is it accurate? Does it conform to the right format? >>Yeah, that's a great question. I think that is a pain point felt across the board, be it by data practitioners or data consumers alike. another service that iota hope provides is the ability to write custom data quality rules and understand how well the data pertains to these rules. This dashboard gives a unified view of the strength of these rules, and your dad is overall quality. >>Okay, so Pat s o on on the accuracy scores there. So if my marketing team needs to run, a campaign can read dependent those accuracy scores to know what what tables have quality data to use for our marketing campaign. >>Yeah, this view would allow you to understand your overall accuracy as well as dive into the minutia to see which data elements are of the highest quality. So for that marketing campaign, if you need everything in a strong form, you'll be able to see very quickly with these high level numbers. But if you're only dependent on a few columns to get that information out the door, you can find that within this view, uh, >>so you >>no longer have to rely on reports about reports, but instead just come to this one platform to help drive conversations between stakeholders and data practitioners. I hope that helps answer your questions about that quality. >>Oh, definitely. So I have another one for you here. Path. So I get now the value of IATA who brings by automatically captured all those technical metadata from sources. But how do we match that with the business glossary? >>Yeah, within the same data quality service that we just reviewed. One can actually add business rules detailing the definitions and the business domains that these fall into. What's more is that the data quality rules were just looking at can then be tied into these definitions, allowing insight into the strength of these business rules. It is this service that empowers stakeholders across the business to be involved with the data life cycle and take ownership over the rules that fall within their domain. >>Okay, so those custom rules can I apply that across data sources? >>Yeah. You can bring in as many data sources as you need, so long as you could tie them to that unified definition. >>Okay, great. Thanks so much bad. And we just want to quickly say to everyone working in data, we understand your pain, so please feel free to reach out >>to us. We >>are website the chapel. Oh, Arlington. And let's get a conversation started on how iota Who can help you guys automate all those manual task to help save you time and money. Thank you. Thank >>you. Erin. >>Impact. If I could ask you one quick question, how do you advise customers? You just walk in this great example This banking example that you and city to talk through. How do you advise customers get started? >>Yeah, I think the number one thing that customers could do to get started with our platform is to just run the tag discovery and build up that data catalog. It lends itself very quickly to the other needs you might have, such as thes quality rules as well as identifying those kind of tricky columns that might exist in your data. Those custom variable underscore tens I mentioned before >>last questions to be to anything to add to what Pat just described as a starting place. >>Um, no, I think actually passed something that pretty well, I mean, just just by automating all those manual tasks, I mean, it definitely can save your company a lot of time and money, so we we encourage you just reach out to us. Let's get that conversation started. >>Excellent. Savita and Pat, Thank you so much. We hope you have learned a lot from these folks about how to get to know your data. Make sure that it's quality so that you can maximize the value of it. Thanks for watching.

Published Date : Dec 10 2020

SUMMARY :

from around the globe. for how you can get to know your data and quickly on. I'm the enterprise account executive here in Ohio. I'm the enterprise data engineer here at Iota Ho. So we spoke with both your technical and your non technical So I have data kept in Data Lakes, legacy data, sources, even the cloud. Typically, the first step is to catalog the data and then start mapping the relationships Um, So is the data catalog automatically populated? Uh, now, by leveraging this interface, we can start to answer the first part of your question So I hope that answers the first part of your question. And I can see how this could be leverage quickly. to run against their data along for flexibility and efficiency and running the policies that affect organization. policies that apply to my organization? And I think this lends to the collaboration as a team can work through the discovery that before were other than if you were going to be using a human. interface lends itself to can really help you build that confidence that your compliance is I have the next question for you. Yeah, it's a fantastic questions to be toe identifying critical data elements, and the interdependencies within I can still see that Unified 3 60 view. Yeah, One feature that is particularly helpful is the ability to add data sources after the data Does it conform to the right format? hope provides is the ability to write custom data quality rules and understand how well the data needs to run, a campaign can read dependent those accuracy scores to know what what tables have quality Yeah, this view would allow you to understand your overall accuracy as well as dive into the minutia I hope that helps answer your questions about that quality. So I have another one for you here. to be involved with the data life cycle and take ownership over the rules that fall within their domain. so long as you could tie them to that unified definition. we understand your pain, so please feel free to reach out to us. help you guys automate all those manual task to help save you time and money. you. This banking example that you and city to talk through. Yeah, I think the number one thing that customers could do to get started with our platform so we we encourage you just reach out to us. Make sure that it's quality so that you can maximize the value of it.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
SabinaPERSON

0.99+

SavitaPERSON

0.99+

PatPERSON

0.99+

PatrickPERSON

0.99+

Patrick ZeimetPERSON

0.99+

Patrick SimonPERSON

0.99+

Evita DavisPERSON

0.99+

LisaPERSON

0.99+

OhioLOCATION

0.99+

ABC BankORGANIZATION

0.99+

Patrick SabettaPERSON

0.99+

Sabita DavisPERSON

0.99+

I Ho TahoeORGANIZATION

0.99+

Patrick SamitPERSON

0.99+

90%QUANTITY

0.99+

ErinPERSON

0.99+

ExcelTITLE

0.99+

each itemQUANTITY

0.99+

first stepQUANTITY

0.99+

two folksQUANTITY

0.99+

todayDATE

0.99+

Io TahoeORGANIZATION

0.98+

bothQUANTITY

0.98+

first partQUANTITY

0.98+

JohnPERSON

0.98+

HIPAATITLE

0.98+

first oneQUANTITY

0.97+

iotaTITLE

0.95+

one quick questionQUANTITY

0.94+

ferpaTITLE

0.93+

Iota HoTITLE

0.93+

CubeORGANIZATION

0.93+

One featureQUANTITY

0.92+

IATAORGANIZATION

0.92+

over 100 different data sourcesQUANTITY

0.9+

oneQUANTITY

0.89+

one platformQUANTITY

0.88+

three other tablesQUANTITY

0.86+

PanPERSON

0.85+

TahoeORGANIZATION

0.84+

Iota HoTITLE

0.84+

one thingQUANTITY

0.82+

TahoePERSON

0.82+

Iota HoORGANIZATION

0.75+

over 300QUANTITY

0.74+

CTITLE

0.74+

both systemQUANTITY

0.72+

at leastQUANTITY

0.68+

Data LakesLOCATION

0.68+

MeteoORGANIZATION

0.64+

OneQUANTITY

0.58+

Io-TahoeORGANIZATION

0.56+

DozierORGANIZATION

0.56+

pTITLE

0.52+

300OTHER

0.48+

ArlingtonPERSON

0.41+

TahoeLOCATION

0.4+

3 60OTHER

0.38+