Vimal Endiran, Global Data Business Group Ecosystem Lead, Accenture @AccentureTech
>> Live from San Jose, in the heart of Silicon Valley, it's theCube. Covering Datawork Summit 2018. Brought to you by Hortonworks. >> Welcome back to theCube's live coverage of Dataworks here in San Jose, California. I'm your host, Rebecca Knight along with my cohost James Kobielus. We have with us Vimal Endiran. He is the Global Business Data Group Ecosystem Lead, at Accenture. He's coming to us straight from the Motor City. So, welcome Vimal. >> Thank you, thank you Rebecca. Thank you Jim. Looking forward to talk to you for the next ten minutes. >> So, before the cameras were rolling we were talking about how data veracity and how managers can actually know that the data that they're getting, that they're seeing, is trustworthy. What's your take on that right now? >> So, in the today's age the data is coming at you in a velocity that you never thought about, right. So today, the organizations are gathering data probably in the magnitude of petabytes. This is a new normal. We used to talk about gigs and now it's in petabytes. And the data coming in the form of images, video files, from the edge, you know edge devices, sensors, social media and everything. So, the amount of data, this is becoming the fuel for the new economy, right. So that companies, who can find a way to take advantage and figure out a way to use this data going to have a competitive advantage over their competitors. So, for that purpose, even though it's coming at that volume and velocity doesn't mean it's useful. So the thing is if they can find a way to make the data can be trustworthy, by the organization, and at the same time it's governed and secured. That's what's going to happen. It used to be it's called data quality, we call it when the structure it's okay, everything is maintained in SAP or some system. It's good it's coming to you. But now, you need to take advantage of the tools like machine learning, artificial intelligence, combining these algorithms and tool sets and abilities of people's mind, putting that in there and making it somewhat... Things can happen to itself at the same time it's trustworthy, we have offerings around that Accenture is developing place... It differs from industry to industry. Given the fact if the data coming in is something it's only worth for 15 seconds. After that it has no use other than understanding how to prevent something, from a sense of data. So, we have our offerings putting into place to make the data in a trustworthy, governed, secured, for an organization to use it and help the organization to get there. That's what we are doing. >> The standard user of your tools is it a data steward in the traditional sense or is it a data scientist or data engineer who's trying to, for example, compile a body of training data for use in building and training machine learning models? Do you see those kinds of customers for your data veracity offerings, that customer segment growing? >> Yes. We see both sides pretty much all walk of customers in our life. So, you hit the nail on the head, yes. We do see that type of aspects and also becoming, the data scientists you're also getting another set of people, the citizen data scientist. The people--- >> What is that? That's a controversial term. I've used that term on a number of occasions and a lot of my colleagues and peers in terms of other analysts bat me down and say, "No, that demeans the profession of data science by calling it..." But you tell me what how Accenture's defining that. >> The thing is, it's not demeaning. The fact is to become a citizen data scientist you need the help of data scientists. Basically, every time you need to build a model. And then you feed some data to learn. And then have an outcome to put that out. So you have a data scientist creating algorithms. What a citizen data scientist means, say if I'm not a data scientist, I should be able to take advantage of a model built for my business scenario, feed something data in, whatever I need to feed in, get an output and that program, that tool's going to tell me, go do this or don't do this, kind of things. So I become a data scientist by using a predefined model that's developed by an expert. Minds of many experts together. But rather than me going and hiring hundred experts, I go and buy a model and able to have one person maintain or tweak this model continuously. So, how can I enable that large volume of people by using more models. That's what-- >> If a predictive analytics tool that you would license from whatever vendor. If that includes prebuilt machine learning models for a particular tasks in it does that... Do you as a user of that tool, do you become automatically a citizen data scientist or do you need to do some actual active work with that model or data to live up to the notion of being a citizen data scientist? >> It's a good question. In my mind, I don't want to do it, my job is something else. To make something for the company. So, my job is not creating a model and doing that. My job is, I know my sets of data, I want to feed it in. I want to get the outcome that I can go and say increase my profit, increase my sales. That's what I want to do. So I may become a citizen data scientist without me knowing. I won't even be told that I'm using a model. I will take this set of data, feed it in here, it's going to tell you something. So, our data veracity point of view, we have these models built into some of platforms. That can be a tool from foreign works, taking advantage of the data storage tool or any other... In our own algorithms put in that helps you to create and maintain the data veracity to a scale of, if you say one to five, one is being low, five is being bad, to maintain at the five level. So that's the objective of that. >> So you're democratizing the tools of data science for the rest of us to solve real business problems. >> Right. >> So the data veracity aside, you're saying the user of these tools is doing something to manage, to correct or enhance or augment the data that's used to feed into these prebuilt models to achieve these outcomes? >> Yes. The augmented data, the feed data and the training data it comes out with an outcome to say, go do something. It tells you to perform something or do not perform. It's still an action. Comes out with an action to achieve a target. That's what it's going to be. >> You mention Hortonworks and since we are here at Dataworks and the Hortonworks show, tell us a little bit about your relationship with that company. >> Definitely. So Hortonworks is one of our premiere strategic partners. We've been the number one implementers, the partners for last two years in a row, implementing their technology across many of our clients. From partnership point of view, we have jointly developed offerings. What Accenture is best at, we're very good at industry knowledge. So with our industry knowledge and with their technology together what we're doing is we're creating some offerings that you can take to market. For example, we used to have data warehouses like using Teradata and older technology data warehouses. They're still good but at the same time, people also want to take the structured, unstructured data, images files and able to incorporate into the existing data warehouses. And how I can get the value out of the whole thing together. That's where Hortonworks' type of tools comes to play. So we have developed offerings called Modern Data Warehouse, taking advantage of your legacy systems you have plus this new data coming together and immediately you can create an analytics case, used case to do something. So, we have prebuilt programs and different scripts that take in different types of data. Moving into a data lake, Hortonworks data lake and then use your existing legacy data and all those together help you to create analytics use cases. So we have that called data modernization offering, we have one of that. Then we have-- >> So that's a prebuilt model for a specific vertical industry requirements or a specific business function, predictive analytics, anomaly detection and natural language processing, am I understanding correctly? >> Yes. We have industry based solutions as well but also to begin with, the data supply chain itself. To bring the data into the lake to use it. That's one of the offerings we play-- >> ...Pipeline and prepackaged models and rules and so forth. >> Right, prepackaged data ingestion, transformation, that prepackaged to take advantage with the new data sets along with your legacy data. That's one offering called data modernization offering. That to cloud. So, we can take to cloud. Hortonworks in a cloud it can be a joure, WS, HP, any cloud plus moving data. So that's one type of offering. Today actually we announced another offering jointly with Hortonworks, Atlas and Grainger Tool to help GDPR compliance. >> Will you explain what that tool does specifically to help customers with GDPR points. Does it work out of the box with Hortonworks data stewards studio? >> Well, to me I can get your answers from my colleagues who are much more technical on that but the fact is I can tell you functionally what the tool does is. >> Okay, please. >> So you, today the GDPR is basically, there's account regulations about you need to know about your personal data and you have your own destiny about your personal data. You can call the company and say, "Forget about me." If you are an EU resident. Or say, "Modify my data." They have to do it within certain time frame. If not they get fined. The fine can be up to 4% of the company's... So it's going to be a very large fine. >> Total revenue, yeah. >> So what we do is, basically take this tool. Put it in, working with Hortonworks this Atlas and Granger tool, we can go in and scan your data leak and we can scan at the metadata level and come into showcase. Then you know where is your personal data information about a consumer lies and now I know everything. Because what used to be in a legacy situation, the data originated someplace, somebody takes it and puts a system then somebody else downloads to an X file, somebody will put in an access data base and this kind of things. So now your data's pulling it across, you don't know where that lies. In this case, in the lake we can scan it, put this information, the meta data and the lineage information. Now, you immediately know where the data lies when somebody calls. Rebecca calls and says, "No longer use my information." I exactly know it's stored in this place in this table, in this column, let me go and take it out from here so that Rebecca doesn't exist anymore. Or whoever doesn't exist anymore. So that's the idea behind it. Also, we can catalog the entire data lake and we know not just personal information, other information, everything about other dimensions as well. And we can use it for our business advantage. So that's what we announced today. >> We're almost out of time but I want to finally ask you about talent because this is a pressing issue in Silicon Valley and beyond in really the tech industry, finding the right people, putting them in the right jobs and then keeping them happy there. So recruiting, retaining, what's Accenture's approach? >> This area, talent is the hardest one. >> Yes! >> Thanks to Hortonworks and Hortonworks point of view >> Send them to Detroit where the housing is far less expensive. >> Not a bad idea. >> Exactly! But the fact is-- >> We're both for Detroiters. >> What we did was, Hortonworks, Accenture has access to Hortonworks University, all their educational aspects. So we decided we're going to take that advantage and we going to enhance our talent by bringing the people from our... Retraining the people, taking the people to the new. People who know the legacy data aspects. So take them to see how we take the new world. So then we have a plan to use Hortonworks together the University, the materials and the people help, together we going to train about 500 people in different geos, 500 per piece and also our the development centers in India, Philippines, these places, so we have a larger plan to retrain the legacy into new. So, let's go and get people from out of the college and stuff, start building them from there, from an analyst to a consultant to a technical level and so that's the best way we are doing and actually the group I work with. Our group technology officer Sanjiv Vohra, he's basically in charge of training about 90,000 people on different technologies in and around that space. So the magnet is high but that's our approach to go and try and people and take it to that. >> Are you training them to be well rounded professionals in all things data or are you training them for specific specialties? >> Very, very good question. We do have this call master data architect program, so basically in the different levels after these trainings people go through specially you have to do so many projects, come back have an interview with a panel of people and you get certified, within the company, at certain level. At the master architect level you go and help a customer transform their data transformation, architecture vision where do you want to go to, that level. So we have the program with a university and that's the way we've taken it step by step to people to that level. >> Great. Vimal, thank you so much for coming on theCube. >> Thank you. >> It was really fun talking to you. >> Thank you so much, thank you for having me. Thank you. >> I'm Rebecca Knight for James Kobielus we will have more, well we actually will not be having any more coming up from Dataworks. This has been the Dataworks show. Thank you for tuning in. >> Signing off for now. >> And we'll see you next time.
SUMMARY :
Brought to you by Hortonworks. He is the Global Business Data Group Ecosystem Lead, Looking forward to talk to you for the next ten minutes. and how managers can actually know that the data and help the organization to get there. the data scientists "No, that demeans the profession of data science So you have a data scientist creating algorithms. or do you need to do some actual active work with that model and maintain the data veracity to a scale of, for the rest of us to solve real business problems. The augmented data, the feed data and the training data and the Hortonworks show, and immediately you can create an analytics case, To bring the data into the lake to use it. that prepackaged to take advantage with the new data sets to help customers with GDPR points. I can tell you functionally what the tool does is. and you have your own destiny about your personal data. So that's the idea behind it. and beyond in really the tech industry, Send them to Detroit and so that's the best way we are doing At the master architect level you go Vimal, thank you so much for coming on theCube. Thank you so much, thank you for having me. This has been the Dataworks show.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Rebecca | PERSON | 0.99+ |
James Kobielus | PERSON | 0.99+ |
Vimal | PERSON | 0.99+ |
Rebecca Knight | PERSON | 0.99+ |
Jim | PERSON | 0.99+ |
Sanjiv Vohra | PERSON | 0.99+ |
Hortonworks | ORGANIZATION | 0.99+ |
India | LOCATION | 0.99+ |
Vimal Endiran | PERSON | 0.99+ |
15 seconds | QUANTITY | 0.99+ |
Silicon Valley | LOCATION | 0.99+ |
Today | DATE | 0.99+ |
San Jose | LOCATION | 0.99+ |
Hortonworks University | ORGANIZATION | 0.99+ |
Accenture | ORGANIZATION | 0.99+ |
five | QUANTITY | 0.99+ |
hundred experts | QUANTITY | 0.99+ |
San Jose, California | LOCATION | 0.99+ |
Detroit | LOCATION | 0.99+ |
HP | ORGANIZATION | 0.99+ |
one | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
both sides | QUANTITY | 0.99+ |
Hortonworks, | ORGANIZATION | 0.99+ |
Hortonworks' | ORGANIZATION | 0.99+ |
both | QUANTITY | 0.98+ |
WS | ORGANIZATION | 0.98+ |
about 90,000 people | QUANTITY | 0.98+ |
500 per piece | QUANTITY | 0.97+ |
Teradata | ORGANIZATION | 0.97+ |
one person | QUANTITY | 0.97+ |
GDPR | TITLE | 0.97+ |
about 500 people | QUANTITY | 0.96+ |
Global Business Data Group Ecosystem | ORGANIZATION | 0.95+ |
five level | QUANTITY | 0.93+ |
up to 4% | QUANTITY | 0.93+ |
EU | LOCATION | 0.93+ |
Datawork Summit 2018 | EVENT | 0.93+ |
Dataworks | ORGANIZATION | 0.93+ |
Detroiters | PERSON | 0.92+ |
@AccentureTech | ORGANIZATION | 0.91+ |
Atlas and Grainger Tool | ORGANIZATION | 0.88+ |
Global Data Business Group Ecosystem Lead | ORGANIZATION | 0.86+ |
theCube | ORGANIZATION | 0.83+ |
Philippines | LOCATION | 0.8+ |
master | TITLE | 0.77+ |
one type | QUANTITY | 0.74+ |
petabytes | QUANTITY | 0.73+ |
SAP | ORGANIZATION | 0.61+ |
last two | DATE | 0.58+ |
ten minutes | QUANTITY | 0.58+ |
Atlas | ORGANIZATION | 0.52+ |
years | QUANTITY | 0.5+ |
data architect program | OTHER | 0.48+ |
Granger | ORGANIZATION | 0.46+ |