Edge Is Not The Death Of Cloud
(electronic music) >> Narrator: From the SiliconANGLE Media office in Boston Massachusetts, it's the CUBE. Now here are your hosts, Dave Vellante and Stu Miniman. >> Cloud is dead, it's all going to the edge. Or is it? Hi everybody, this is Dave Vellante and I'm here with Stu Miniman. Stu, where does this come from, this narrative that the cloud is over? >> Well Dave, you know, clouds had a good run, right? It's been over a decade. You know, Amazon's dominance in the marketplace but Peter Levine from Andreessen Horowitz did an article where he said, cloud is dead, the edge is killing the dead. The Edge is killing the cloud and really we're talking about IoT and IoT's huge opportunity. Wikibon, Dave we've been tracking for many years. We did you know the original forecast for the Industrial Internet and obviously there's going to be lots more devices at the edge so huge opportunity, huge growth, intelligence all over the place. But in our viewpoint Dave, it doesn't mean that cloud goes away. You know, we've been talking about distributed architectures now for a long time. The cloud is really at the core of this building services that surround the globe, live in just hundreds of places for all these companies so it's nuanced. And just as the cloud didn't overnight kill the data center and lots of discussion as to what lives in the data center, the edge does not kill the cloud and it's really, we're seeing some major transitions pull and push from some of these technologies. A lot of challenges and lots to dig into. >> So I've read Peter Levine's piece, I thought was very thought-provoking and quite well done. And of course, he's coming at that from the standpoint of a venture capitalist, all right. Do I want to start you know, do I want to pour money into the trend that is now the mainstream? Or do I want to get ahead of it? So I think that's what that was all about but here's my question Stu is, in your opinion will the activity that occurs at the edge, will it actually drive more demand from the cloud? So today we're seeing the infrastructure, the service business is growing at what? Thirty five percent? Forty percent? >> Sure, sure. Amazon's growing at the you know, 35 to 40 percent. Google, Microsoft are growing double that right now but overall you're right. >> Yeah, okay and so, and then of course the enterprise players are flat if they're lucky. So my question is will the edge actually be a tailwind for the cloud, in your opinion? >> Yeah, so first on your comment there from an investment standpoint, totally can understand why edge is greenfield opportunity. Lots of different places that I can place bets and probably can win as opposed to if I think that today I'm going to compete against the hyperscale cloud guys. You know, they're pouring 10 billion dollars a year into their infrastructure. They have huge massive employment so the bar to entry is a lot higher. I'm sorry, the second piece was? >> So will the edge drive more demand for the cloud? >> Yeah, absolutely. I think it does Dave because you know, let's take something like autonomous vehicles. Something that we talk about. I need intelligence of the edge. I can't wait for some instruction to go back to the cloud before my Tesla plows into an individual. I need to know that it's there but the models themselves, really I've got all the compute in the cloud. This is where I'm going to train all of my models but I need to be able to update and push those to the edge. If I think about a lot of the industrial applications. Flying a plane is, you know, things need to happen locally but all the anomalies and new things that we run into there's certain pieces that need to be updated to the cloud. So you know, it's kind of a multi-layer. If we look at how much data will there be at the edge, well there's probably going to be more data at the edge than there will be in the central cloud. But how much activity, how much compute do I need, how much things do I need to actually work on. The cloud is probably going to be that central computer still and it's not just a computer, as I said, a distributed architecture. That's where, you know. When we've looked at big data in the early days Dave, when we can put those data lines in the cloud. I've got thousands or millions of compute cycles that I can throw at this at such a lower price and use that there as opposed to at the edge especially. What kind of connectivity do I have? Am i isolated from those other pieces? If you go back to my premise of we're building distributed architectures, the edge is still very early. How do I make sure I secure that? Do I have the network? There's lots of things that I'm going to build in a tiny little component and have that be there. And there's lots of hardware innovation going on at that edge too. >> Okay, so let's talk about how this plays out a little bit and you're talking about a distributed model and it's really to me a distributed data model. The research analysts at Wikibon have envisioned this three-tier data model where you've got data at the edge, which you may or may not persist. You've got some kind of consolidation or aggregation layer where it's you know, it's kind of between the edge and the deep data center and then you've got the cloud. Now that cloud can be an on-prem cloud or it could be the public cloud. So that data model, how do you see that playing out with regard to the adoption of cloud, the morphing of cloud and the edge and the traditional data center? >> Yeah we've been talking about intelligent devices at the edge for a couple decades now. I mean, I remember I built a house in like 1999 and the smart home was already something that people were talking about then. Today, great, I've got you know. I've got my Nest if I have, I probably have smart assistants. There's a lot of things I love-- >> Alexa. >> Saw on Twitter today, somebody's talking like I'm waiting for my light bulbs to update their firmware from the latest push so, some of its coming but it's just this slow gradual adoption. So there's the consumer piece and then there's the business aspect. So, you know, we are still really really early in some of these exciting edge uses. Talk about the enterprise. They're all working on their strategy for how devices and how they're going to work through IoT but you know this is not something that's going to happen overnight. It's they're figuring out their partnerships, they're figuring out where they work, and that three-tiered model that you talked about. My cloud provider, absolutely hugely important for how I do that and I really see it Dave, not as an or but it's an and. So I need to understand where I collect my data, where it's at certain aspects are going to live, and the public cloud players are spending a lot of time working on on that intelligence, the intelligence layer. >> And Stu, I should mention, so far we're talking about really, the infrastructure as a service layer comprises database and middleware. We haven't really addressed the the SAS space and we're not going to go deep into that but just to say. I mean look, packaged software as we knew it is dead, right? SAS is where all the action is. It's the highest growth area, it's the highest value area, so we'll cover that in another segment. So we're really talking about that, the stack up to the middleware, the database, and obviously the infrastructures as a service. So when you think about the players here, let's start with AWS. You've been to I think, every AWS re:Invent maybe, with the exception of one. You've seen the evolution. I was just down in D.C. the other day and they have this chart on the wall, which is their releases, their functional releases by year. It's just, it's overwhelming what they've done. So they're obviously the leader. I saw a recent Gartner Magic Quadrant. It looked like, I tweeted it, it looked like Ronnie Turcotte looking back on Secretariat from the Belmont and whatever it was. 1978, I think it was. (laughs) 31 lengths. I mean, massive domination in the infrastructure as a service space. What do you see going on? >> Yeah so, Dave, absolutely. Today the cloud is, it's Amazon's market out there. Interestingly if you say, okay what's some of the biggest threats in the infrastructure as a service? Well, maybe China, Dave. You know, Alibaba was one that you look at there. But huge opportunity for what's happened at the edge. If you talk about intelligence, you talk about AI, talk about machine learning. Google is actually the company that most people will talk about it, can kind of have a leadership. Heck, I've even seen discussion that maybe we need antitrust to look at Google because they're going to lock things up. You know, they have Android, they have Google Home, they have all these various pieces. But we know Dave, they are far behind Amazon in the public cloud market and Amazon has done a lot, especially over the last two years. You're right, I've been to every Amazon re:Invent except for the first one and the last two years, really seen a maturation of that growth. Not just you know, devices and partnerships there but how do they bring their intelligence and push that out to the edge so things like their serverless technology, which is Lambda. They have Lambda Greengrass that can put to the edge. The serverless is pervading all of their solutions. They've got like the Aurora database-- >> And serverless is profound, not just that from the standpoint of application development but just an entire new business model is emerging on top of serverless and Lambda really started all that but but carry on. >> Yeah and when you look in and you say okay, what better use case than IoT for, well I need infrastructure but I only need it when I need it and I want to call it for when it's there. So that kind of model where I should be able to build by the microsecond and only use what I need. That's something that Amazon is at the forefront, clear leadership position there and they should be able to plug in and if they can extend that out to the edge, starting new partnerships. Like the VMware partnerships, interesting. Red Hat's another partnership they have with OpenShift to be able to get that out to more environments and Amazon has a tremendous ecosystem out there and absolutely is on their radar as to how their-- >> They're crushing it So we were at Google Next last year. Big push, verbally anyway, to the enterprise. They've been making some progress, they're hiring a lot of people out of formerly Cisco, EMC, folks that understand the enterprise but beyond sort of the AI and sort of data analytics, what kind of progress has Google made relative to the leader? >> So in general, enterprise infrastructure service, they haven't made as much progress as most of us watching would expect them to make. But Dave, you mentioned something, data. I mean, at the center of everything we're talking about is the data. So in some ways is Google you know, come on Google, they're smarter than the rest of us. They're skating to where the puck is Dave and infrastructure services, last decades argument if it's the data and the intelligence, Google's got just brilliant people. They're working at the some of these amazing environments. You look at things like Google's Spanner. This is distributed architecture. Say how do I plug in all of these devices and help the work in a distributed gradual work well. You know, heck, I'd be reading the whitepapers that Google's doing in understanding that they might be really well positioned in this 3D chess match that were playing. >> Your eyes might bleed. (laughs) I've read the Google Spanner, I was very excited about it. Understood, you know, a little bit of it. Okay, let's talk about Microsoft. They're really of the big cloud guys. They're really the one that has a partnership strategy to do both on-prem and public cloud. What are your thoughts on that now that sort of Azure stack is starting to roll out with some key partners? >> Yeah absolutely, it's the one that you know. Dave, if you use your analogy looking back, it's like well the next one, it's gaining a little bit, gaining a little bit but still far back. There is Microsoft. Where Microsoft has done best of course is their portfolio of business applications that they have. That they've really turned the green light on for enterprises to adopt SAS with Office 365. Azure stack, it's early days still but companies that use Microsoft, they trust Microsoft. Microsoft's done phenomenal working with developers over the last couple of years. Very prominent like the Kubernetes shows that I've been attending recently. They've absolutely got a play for serverless that we were talking about. I'm not as up to speed as to where Microsoft sits for kind of the IoT edge discussions. >> But you know they're playing there. >> Yeah, absolutely. I mean, Microsoft does identity better than anyone. Active Directory is still the standard in enterprises today. So you know, I worry that Microsoft could be caught in the middle. If Google's making the play for what's next, Microsoft is still chasing a little bit what Amazon's already winning. >> Okay and then we don't have enough time to really talk about China, you mentioned it before. Alibaba's you know, legit. Tencent, Baidu obviously with their captive market in China, they're going to do a lot of business and they're going to move a lot of compute and storage and networking but maybe address that in another segment. I want to talk about the traditional enterprise players. Dell EMC, IBM, HPE, Cisco, where do they stand? We talk a lot at Wikibond about true private cloud. The notion that you can't just stick all your data into the public cloud. Andy Jassy may disagree with that but there are practical realities and certainly when you talk to CIOs they they underscore that. But that notion of true private cloud hasn't allowed these companies to really grow. Now of course IBM and Oracle, I didn't mention Oracle, have a different strategy and Oracle's strategy is even more different. So let's sort of run through them. Let's take the arms dealers. Dell EMC, HPE, Cisco, maybe you put Lenovo in there. What's their cloud strategy? >> Well first of all Dave I think most of them, they went through a number of bumps along the road trying to figure out what their cloud strategy is. Most of them, especially let's take, if you take the compute or server side of the business, they are suppliers to all the service providers trying to get into the hyperscalers. Most of them have, they all have some partnership with Microsoft. There's a Assure stack and they're saying, okay hey, if I want an HPE server in my own data center and in Azure, Microsoft's going to be happy to provide that for you. But David, it's not really competing against infrastructure as a service and the bigger question is as that market has kind of flattened out and we kind of understand it, where is the opportunity for them in IoT. We saw, you know Dave. Last five years or so, can I have a consumer business and an enterprise business in the same? HPE tore those two apart. Michael Dell has kept them together. IBM spun off to Lenovo everything that was on the more consumer side of the business. Where will they play or will companies like Google, like Apple, the ones that you know, Dave. They are spending huge amounts of money in chips. Look at Google and what they're doing with TP use. Look at Apple, I believe it was, there was an Israeli company that they bought and they're making chips there. There's a different need at the edge and sure, company like Dell can create that but will they have the margin, will they have the software, will they have the ecosystem to be able to compete there? Cisco, I haven't seen on the compute side, them going down that path but I was at Cisco Live and a big talk there. I really like the opening keynote and we had a sit down on the CUBE with the executive, it said really if I look out to like 2030. If Cisco still successful and we're thinking about them, we don't think of them as a network company anymore. They are a software company and therefore, things like collaboration, things like how it's kind of a new version of networking that's not on ports and boxes. But really as I think about my data, think about my privacy and security, Cisco absolutely has a play there. They've done some very large acquisitions in that space and they've got some deep expertise there. >> But again, Dell, HPE, Cisco, predominantly arms dealers. Obviously don't have, HPE at one point had a public cloud, they've pulled back. HP's cloud play really is cloud technology partners that they acquire. That at least gives them a revenue stream into the cloud. Now maybe-- >> But it's a consultancy. >> It's a consultancy, maybe it's a one-way trip to the cloud but I will say this about CTP. What it does is it gives HPE a footprint in that business and to the extent that they're a trusted service provider for companies trying to move into the cloud. They can maybe be in the catbird seat for the on-prem business but again, largely an arms dealer. it's going to be a lower margin business certainly than IBM and Oracle, which have applications. They own their own public cloud with the Oracle public cloud and IBM cloud, formerly SoftLayer, which was a two billion dollar acquisition several years ago. So those companies from a participation standpoint, even a tiny market share is compared to Amazon, Google, and Microsoft. They're at least in that cloud game and they're somewhat insulated from that disruption because of their software business and their large install base. Okay, I want to sort of end with, sort of where we started. You know, the Peter Levine comment, cloud is dead, it's all going to the edge. I actually think the cloud era, it's kind of, it's here, we're kind of. It's kind of playing out as many of us had expected over the last five years. You know what blew me away? Is Alexa, who would have thought that Amazon would be a leader in this sort of natural language processing marketplace, right? You would have thought it would come from, certainly Google with all the the search capability. You would have thought Apple with Siri, you know compared to Alexa. So my point is Amazon is able to do that because it's got a data model. It's a data company, all these companies, including Apple, Google, Microsoft, Amazon, Facebook. The largest market cap companies in the world, they have data at the core. Data is foundational for those companies and that's why they are in such a good position to disrupt. So cloud, SAS, mobile, social, big data, to me still these are kind of the last 10 years. The next 10 years are going to be about AI, machine intelligence, deep learning, machine learning, cognitive. We're trying to even get the names right but it starts with the data. So let me put forth the premise and get your commentary. and tie it back in the cloud. So the innovation, in the next 10 years is going to come from data and to the extent that your data is not in silos, you're going to be in a much better position than if it is. Number two is your application of artificial intelligence, you know whatever term you want to use, machine intelligence, etc. Data plus AI, plus I'll bring it back to cloud, cloud economics. If you don't have those cloud economics then you're going to be at a disadvantage of innovation. So let's talk about what we mean by cloud economics. You're talking about the API economy, talking about global scale, always on. Very importantly something we've talked about for years, virtually zero marginal costs at volume, which you're never going to get on-prem because this creates a network effect. And the other thing it does from an innovation context, it attracts startups. Or startups saying, hey I want to build on-prem. No, they don't want to build in the cloud. So it's data plus artificial intelligence plus cloud economics that's going to drive innovation in the next ten years. What are your thoughts? >> Yeah Dave, absolutely. Something I've been saying for the last couple of years, we watched kind of the the customer flywheel that the public clouds have. Data is that next flywheel so companies that can capture that. You mentioned Amazon and Alexa, one of the reasons that Amazon can basically sell that as a loss is lots of those people, they're all Amazon Prime customers and they're ordering more things from Amazon and they're getting so much data that drive all of those other services. Where is Amazon going to threaten in the future? Everywhere. It is basically what they see. The thing we didn't discuss there Dave, you know I love your premise there, is it's technology plus people. What's going to happen with jobs? You and I did the sessions with Andy McAfee and Eril Brynjolfsson, it's racing with the machine. Where is, we know that people plus machines always beat so we spent the last five years talking about data scientist, the growth of developers and developers and the new king makers. So you know what are those new jobs, what are those new roles that are going to help build the solutions where people plus machine will win and what does that kind of next generation of workforce going to look like? >> Well I want to add to that Stu, I'm glad you brought that up. So a friend of mine David Michelle is just about to publish a new book called Seeing Digital. And in that book, I got an advance copy, in there he talks about companies that have data at their core and with human expertise around the data but if you think about the vast majority of companies, it's human expertise and the data is kind of bolted on. And the data lives in silos. Those companies are in a much more vulnerable position in terms of being disrupted, than the ones that have a data model that everybody has access to with human expertise around it. And so when you think about digital disruption, no industry is safe in my opinion, and every industry has kind of its unique attributes. You know, obviously publishing and books and music have disrupted very quickly. Insurance hasn't been disrupted, banking hasn't been disrupted, although blockchain it's probably going to affect that. So again, coming back to this tail-end premise is the next 10 years is going to be about that digital disruption. And it's real, it's not just a bunch of buzzwords, a cloud is obviously a key component, if not the key component of the underlying infrastructure with a lot of activity in terms of business models being built on top. All right Stu, thank you for your perspectives. Thanks for covering this. We will be looking for this video, the outputs, the clips from that. Thanks for watching everybody. This is Dave Vellante with Stu Miniman, we'll see you next time. (electronic music)
SUMMARY :
Boston Massachusetts, it's the CUBE. Cloud is dead, it's all going to the edge. The cloud is really at the core of this Do I want to start you know, Amazon's growing at the you know, 35 to 40 percent. a tailwind for the cloud, in your opinion? so the bar to entry is a lot higher. I need intelligence of the edge. and the traditional data center? and the smart home was already something that and the public cloud players are spending a lot of time and obviously the infrastructures as a service. and push that out to the edge so things like not just that from the standpoint of application development and absolutely is on their radar as to how their-- beyond sort of the AI and sort of data analytics, and help the work in a distributed gradual work well. They're really the one that has a partnership strategy Yeah absolutely, it's the one that you know. Active Directory is still the standard in enterprises today. and they're going to move a lot of compute and an enterprise business in the same? that they acquire. So the innovation, in the next 10 years You and I did the sessions with it's human expertise and the data is kind of bolted on.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
IBM | ORGANIZATION | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
David | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
Apple | ORGANIZATION | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Dave Vellante | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
David Michelle | PERSON | 0.99+ |
Ronnie Turcotte | PERSON | 0.99+ |
Alibaba | ORGANIZATION | 0.99+ |
35 | QUANTITY | 0.99+ |
Stu Miniman | PERSON | 0.99+ |
Peter Levine | PERSON | 0.99+ |
China | LOCATION | 0.99+ |
Lenovo | ORGANIZATION | 0.99+ |
Andy Jassy | PERSON | 0.99+ |
1999 | DATE | 0.99+ |
Eril Brynjolfsson | PERSON | 0.99+ |
EMC | ORGANIZATION | 0.99+ |
thousands | QUANTITY | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Andy McAfee | PERSON | 0.99+ |
HPE | ORGANIZATION | 0.99+ |
Baidu | ORGANIZATION | 0.99+ |
millions | QUANTITY | 0.99+ |
HP | ORGANIZATION | 0.99+ |
Tencent | ORGANIZATION | 0.99+ |
second piece | QUANTITY | 0.99+ |
Tesla | ORGANIZATION | 0.99+ |
Ajay Mungara, Intel | Red Hat Summit 2022
>>mhm. Welcome back to Boston. This is the cubes coverage of the Red Hat Summit 2022. The first Red Hat Summit we've done face to face in at least two years. 2019 was our last one. We're kind of rounding the far turn, you know, coming up for the home stretch. My name is Dave Valentin here with Paul Gillon. A J monger is here is a senior director of Iot. The Iot group for developer solutions and engineering at Intel. AJ, thanks for coming on the Cube. Thank you so much. We heard your colleague this morning and the keynote talking about the Dev Cloud. I feel like I need a Dev Cloud. What's it all about? >>So, um, we've been, uh, working with developers and the ecosystem for a long time, trying to build edge solutions. A lot of time people think about it. Solutions as, like, just computer the edge. But what really it is is you've got to have some component of the cloud. There is a network, and there is edge and edge is complicated because of the variety of devices that you need. And when you're building a solution, you got to figure out, like, where am I going to push the computer? How much of the computer I'm going to run in the cloud? How much of the computer? I'm gonna push it at the network and how much I need to run it at the edge. A lot of times what happens for developers is they don't have one environment where all of the three come together. And so what we said is, um, today the way it works is you have all these edge devices that customers by the instal, they set it up and they try to do all of that. And then they have a cloud environment they do to their development. And then they figure out how all of this comes together. And all of these things are only when they are integrating it at the customer at the solution space is when they try to do it. So what we did is we took all of these edge devices, put it in the cloud and gave one environment for cloud to the edge. Very good to your complete solution. >>Essentially simulates. >>No, it's not >>simulating span. So the cloud spans the cloud, the centralised cloud out to the edge. You >>know, what we did is we took all of these edge devices that will theoretically get deployed at the edge like we took all these variety of devices and putting it put it in a cloud environment. So these are non rack mountable devices that you can buy in the market today that you just have, like, we have about 500 devices in the cloud that you have from atom to call allusions to F. P. G s to head studio cards to graphics. All of these devices are available to you. So in one environment you have, like, you can connect to any of the cloud the hyper scholars, you could connect to any of these network devices. You can define your network topology. You could bring in any of your sources that is sitting in the gate repository or docker containers that may be sitting somewhere in a cloud environment, or it could be sitting on a docker hub. You can pull all of these things together, and we give you one place where you can build it where you can test it. You can performance benchmark it so you can know when you're actually going to the field to deploy it. What type of sizing you need. So >>let me show you, understand? If I want to test, uh, an actual edge device using 100 gig Ethernet versus an Mpls versus the five G, you can do all that without virtualizing. >>So all the H devices are there today, and the network part of it, we are building with red hat together where we are putting everything on this environment. So the network part of it is not quite yet solved, but that's what we want to solve. But the goal is here is you can let's say you have five cameras or you have 50 cameras with different type of resolutions. You want to do some ai inference type of workloads at the edge. What type of compute you need, what type of memory you need, How many devices do you need and where do you want to push the data? Because security is very important at the edge. So you gotta really figure out like I've got to secure the data on flight. I want to secure the data at Brest, and how do you do the governance of it. How do you kind of do service governance? So that all the services different containers that are running on the edge device, They're behaving well. You don't have one container hogging up all the memory or hogging up all the compute, or you don't have, like, certain points in the day. You might have priority for certain containers. So all of these mortals, where do you run it? So we have an environment that you could run all of that. >>Okay, so take that example of AI influencing at the edge. So I've got an edge device and I've developed an application, and I'm going to say Okay, I want you to do the AI influencing in real time. You got something? They become some kind of streaming data coming in, and I want you to persist, uh, every hour on the hour. I want to save that time stamp. Or if the if some event, if a deer runs across the headlights, I want you to persist that day to send that back to the cloud and you can develop that tested, benchmark >>it right, and then you can say that. Okay, look in this environment I have, like, five cameras, like at different angles, and you want to kind of try it out. And what we have is a product which is into, um, open vino, which is like an open source product, which does all of the optimizations you need for age in France. So you develop the like to recognise the deer in your example. I developed the training model somewhere in the cloud. Okay, so I have, like, I developed with all of the things have annotated the different video streams. And I know that I'm recognising a deer now. Okay, so now you need to figure out Like when the deer is coming and you want to immediately take an action. You don't want to send all of your video streams to the cloud. It's too expensive. Bandwidth costs a lot. So you want to compute that inference at the edge? Okay. In order to do that inference at the edge, you need some environment. You should be able to do it. And to build that solution What type of age device do you really need? What type of compute you need? How many cameras are you computing it? What different things you're not only recognising a deer, probably recognising some other objects could do all of that. In fact, one of the things happened was I took my nephew to San Diego Zoo and he was very disappointed that he couldn't see the chimpanzees. Uh, that was there, right, the gorillas and other things. So he was very sad. So I said, All right, there should be a better way. I saw, like there was a stream of the camera feed that was there. So what we did is we did an edge in friends and we did some logic to say, At this time of the day, the gorillas get fed, so there's likelihood of you actually seeing the gorilla is very high. So you just go at that point and so that you see >>it, you >>capture, That's what you do, and you want to develop that entire solution. It's based on whether, based on other factors, you need to bring all of these services together and build a solution, and we offer an environment that allows you to do it. Will >>you customise the the edge configuration for the for the developer If if they want 50 cameras. That's not You don't have 50 cameras available, right? >>It's all cameras. What we do is we have a streaming capability that we support so you can upload all your videos. And you can say I want to now simulate 50 streams. Want to simulate 30 streams? Or I want to do this right? Or just like two or three videos that you want to just pull in. And you want to be able to do the infant simultaneously, running different algorithms at the edge. All of that is supported, and the bigger challenge at the edge is developing. Solution is fine. And now when you go to actual deployment and post deployment monitoring, maintenance, make sure that you're like managing it. It's very complicated. What we have seen is over 50% 51% to be precise of developers are developed some kind of a cloud native applications recently, right? So that we believe that if you bring that type of a cloud native development model to the edge, then you're scaling problem. Your maintenance problem, you're like, how do you actually deploy it? All of these challenges can be better managed, Um, and if you run all of that is an orchestration later on kubernetes and we run everything on top of open shift, so you have a deployment ready solution already there it's everything is containerised everything. You have it as health charged Dr Composed. You have all their you have tested and in this environment, and now you go take that to the deployment. And if it is there on any standard kubernetes environment or in an open ship, you can just straight away deploy your application. >>What's that edge architecture looked like? What's Intel's and red hats philosophy around? You know what's programmable and it's different. I know you can run a S, a p a data centre. You guys got that covered? What's the edge look like? What's that architecture of silicon middleware? Describe that for us. >>So at the edge, you think about it, right? It can run traditional, Uh, in an industrial PC. You have a lot of Windows environment. You have a lot of the next. They're now in a in an edge environment. Quite a few of these devices. I'm not talking about Farage where there are tiny micro controllers and these devices I'm talking about those devices that connect to these forage devices. Collect the data. Do some analytics do some compute that type of thing. You have foraged devices. Could be a camera. Could be a temperature sensor. Could be like a weighing scale. Could be anything. It could be that forage and then all of that data instead of pushing all the data to the cloud. In order for you to do the analysis, you're going to have some type of an edge set of devices where it is collecting all this data, doing some decisions that's close to the data. You're making some analysis there, all of that stuff, right? So you need some analysis tools, you need certain other things. And let's say that you want to run like, UH, average costs or rail or any of these operating systems at the edge. Then you have an ability for you to manage all of that. Using a control note, the control node can also sit at the edge. In some cases, like in a smart factory, you have a little data centre in a smart factory or even in a retail >>store >>behind a closet. You have, like a bunch of devices that are sitting there, correct. And those devices all can be managed and clustered in an environment. So now the question is, how do you deploy applications to that edge? How do you collect all the data that is sitting through the camera? Other sensors and you're processing it close to where the data is being generated make immediate decisions. So the architecture would look like you have some club which does some management of this age devices management of this application, some type of control. You have some network because you need to connect to that. Then you have the whole plethora of edge, starting from an hybrid environment where you have an entire, like a mini data centre sitting at the edge. Or it could be one or two of these devices that are just collecting data from these sensors and processing it that is the heart of the other challenge. The architecture varies from different verticals, like from smart cities to retail to healthcare to industrial. They have all these different variations. They need to worry about these, uh, different environments they are going to operate under, uh, they have different regulations that they have to look into different security protocols that they need to follow. So your solution? Maybe it is just recognising people and identifying if they are wearing a helmet or a coal mine, right, whether they are wearing a safety gear equipment or not, that solution versus you are like driving in a traffic in a bike, and you, for safety reasons. We want to identify the person is wearing a helmet or not. Very different use cases, very different environments, different ways in which you are operating. But that is where the developer needs to have. Similar algorithms are used, by the way, but how you deploy it very, quite a bit. >>But the Dev Cloud make sure I understand it. You talked about like a retail store, a great example. But that's a general purpose infrastructure that's now customised through software for that retail environment. Same thing with Telco. Same thing with the smart factory, you said, not the far edge, right, but that's coming in the future. Or is that well, that >>extends far edge, putting everything in one cloud environment. We did it right. In fact, I put some cameras on some like ipads and laptops, and we could stream different videos did all of that in a data centre is a boring environment, right? What are you going to see? A bunch of racks and service, So putting far edge devices there didn't make sense. So what we did is you could just have an easy ability for you to stream or connect or a Plourde This far edge data that gets generated at the far edge. Like, say, time series data like you can take some of the time series data. Some of the sensor data are mostly camera data videos. So you upload those videos and that is as good as your streaming those videos. Right? And that means you are generating that data. And then you're developing your solution with the assumption that the camera is observing whatever is going on. And then you do your age inference and you optimise it. You make sure that you size it, and then you have a complete solution. >>Are you supporting all manner of microprocessors at the edge, including non intel? >>Um, today it is all intel, but the plan, because we are really promoting the whole open ecosystem and things like that in the future. Yes, that is really talking about it, so we want to be able to do that in the future. But today it's been like a lot of the we were trying to address the customers that we are serving today. We needed an environment where they could do all of this, for example, and what circumstances would use I five versus i nine versus putting an algorithm on using a graphics integrated graphics versus running it on a CPU or running it on a neural computer stick. It's hard, right? You need to buy all those devices you need to experiment your solutions on all of that. It's hard. So having everything available in one environment, you could compare and contrast to see what type of a vocal or makes best sense. But it's not >>just x 86 x 86 your portfolio >>portfolio of F. P. G s of graphics of like we have all what intel supports today and in future, we would want to open it up. So how >>do developers get access to this cloud? >>It is all free. You just have to go sign up and register and, uh, you get access to it. It is difficult dot intel dot com You go there, and the container playground is all available for free for developers to get access to it. And you can bring in container workloads there, or even bare metal workloads. Um, and, uh, yes, all of it is available for you >>need to reserve the endpoint devices. >>Comment. That is where it is. An interesting technology. >>Govern this. Correct. >>So what we did was we built a kind of a queuing system. Okay, So, schedule, er so you develop your application in a controlled north, and only you need the edge device when you're scheduling that workload. Okay, so we have this scheduling systems, like we use Kafka and other technologies to do the scheduling in the container workload environment, which are all the optimised operators that are available in an open shift, um, environment. So we regard those operators. Were we installed it. So what happens is you take your work, lord, and you run it. Let's say on an I seven device, when you're running that workload and I summon device, that device is dedicated to you. Okay, So and we've instrumented each of these devices with telemetry so we could see at the point your workload is running on that particular device. What is the memory looking like power looking like How hard is the device running? What is a compute looking like? So we capture all that metrics. Then what you do is you take it and run it on a 99 or run it on a graphic, so can't run it on an F p g a. Then you compare and contrast. And you say Huh? Okay for this particular work, Lord, this device makes best sense. In some cases, I'll tell you. Right, Uh, developers have come back and told me I don't need a bigger process that I need bigger memory. >>Yeah, sure, >>right. And some cases they've said, Look, I have I want to prioritise accuracy over performance because if you're in a healthcare setting, accuracy is more important. In some cases, they have optimised it for the size of the device because it needs to fit in the right environment in the right place. So every use case where you optimise is up to the solution up to the developer, and we give you an ability for you to do that kind >>of folks are you seeing? You got hardware developers, you get software developers are right, people coming in. And >>we have a lot of system integrators. We have enterprises that are coming in. We are seeing a lot of, uh, software solution developers, independent software developers. We also have a lot of students are coming in free environment for them to kind of play with in sort of them having to buy all of these devices. We're seeing those people. Um I mean, we are pulling through a lot of developers in this environment currently, and, uh, we're getting, of course, feedback from the developers. We are just getting started here. We are continuing to improve our capabilities. We are adding, like, virtualisation capabilities. We are working very closely with red hat to kind of showcase all the goodness that's coming out of red hat, open shift and other innovations. Right? We heard, uh, like, you know, in one of the open shift sessions, they're talking about micro shifts. They're talking about hyper shift, the talking about a lot of these innovations, operators, everything that is coming together. But where do developers play with all of this? If you spend half your time trying to configure it, instal it and buy the hardware, Trying to figure it out. You lose patience. What we have time, you lose time. What is time and it's complicated, right? How do you set up? Especially when you involve cloud. It has network. It has got the edge. You need all of that right? Set up. So what we have done is we've set up everything for you. You just come in. And by the way, not only just that what we realised is when you go talk to customers, they don't want to listen to all our optimizations processors and all that. They want to say that I am here to solve my retail problem. I want to count the people coming into my store, right. I want to see that if there is any spills that I recognise and I want to go clean it up before a customer complaints about it or I have a brain tumour segmentation where I want to identify if the tumour is malignant or not, right and I want to telehealth solutions. So they're really talking about these use cases that are talking about all these things. So What we did is we build many of these use cases by talking to customers. We open sourced it and made it available on Death Cloud for developers to use as a starting point so that they have this retail starting point or they have this healthcare starting point. All these use cases so that they have all the court we have showed them how to contain arise it. The biggest problem is developers still don't know at the edge how to bring a legacy application and make it cloud native. So they just wrap it all into one doctor and they say, OK, now I'm containerised got a lot more to do. So we tell them how to do it, right? So we train these developers, we give them an opportunity to experiment with all these use cases so that they get closer and closer to what the customer solutions need to be. >>Yeah, we saw that a lot with the early cloud where they wrapped their legacy apps in a container, shove it into the cloud. Say it's really hosting a legacy. Apps is all it was. It wasn't It didn't take advantage of the cloud. Never Now people come around. It sounds like a great developer. Free resource. Take advantage of that. Where do they go? They go. >>So it's def cloud dot intel dot com >>death cloud dot intel dot com. Check it out. It's a great freebie, AJ. Thanks very much. >>Thank you very much. I really appreciate your time. All right, >>keep it right there. This is Dave Volonte for Paul Dillon. We're right back. Covering the cube at Red Hat Summit 2022. >>Mhm. Yeah. Mhm. Mm.
SUMMARY :
We're kind of rounding the far turn, you know, coming up for the home stretch. devices that you need. So the cloud spans the cloud, the centralised You can pull all of these things together, and we give you one place where you can build it where gig Ethernet versus an Mpls versus the five G, you can do all that So all of these mortals, where do you run it? and I've developed an application, and I'm going to say Okay, I want you to do the AI influencing So you develop the like to recognise the deer in your example. and we offer an environment that allows you to do it. you customise the the edge configuration for the for the developer So that we believe that if you bring that type of a cloud native I know you can run a S, a p a data So at the edge, you think about it, right? So now the question is, how do you deploy applications to that edge? Same thing with the smart factory, you said, So what we did is you could just have an easy ability for you to stream or connect You need to buy all those devices you need to experiment your solutions on all of that. portfolio of F. P. G s of graphics of like we have all what intel And you can bring in container workloads there, or even bare metal workloads. That is where it is. So what happens is you take your work, So every use case where you optimise is up to the You got hardware developers, you get software developers are What we have time, you lose time. container, shove it into the cloud. Check it out. Thank you very much. Covering the cube at Red Hat Summit 2022.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Valentin | PERSON | 0.99+ |
Ajay Mungara | PERSON | 0.99+ |
Paul Gillon | PERSON | 0.99+ |
Telco | ORGANIZATION | 0.99+ |
two | QUANTITY | 0.99+ |
France | LOCATION | 0.99+ |
one | QUANTITY | 0.99+ |
50 cameras | QUANTITY | 0.99+ |
five cameras | QUANTITY | 0.99+ |
50 streams | QUANTITY | 0.99+ |
30 streams | QUANTITY | 0.99+ |
Dave Volonte | PERSON | 0.99+ |
100 gig | QUANTITY | 0.99+ |
Boston | LOCATION | 0.99+ |
Paul Dillon | PERSON | 0.99+ |
Intel | ORGANIZATION | 0.99+ |
today | DATE | 0.99+ |
three videos | QUANTITY | 0.99+ |
Red Hat Summit 2022 | EVENT | 0.99+ |
about 500 devices | QUANTITY | 0.98+ |
Red Hat Summit | EVENT | 0.98+ |
ipads | COMMERCIAL_ITEM | 0.98+ |
Iot | ORGANIZATION | 0.98+ |
Kafka | TITLE | 0.98+ |
each | QUANTITY | 0.97+ |
Windows | TITLE | 0.97+ |
three | QUANTITY | 0.97+ |
AJ | PERSON | 0.97+ |
first | QUANTITY | 0.96+ |
red hat | TITLE | 0.96+ |
Death Cloud | TITLE | 0.95+ |
one doctor | QUANTITY | 0.94+ |
over 50% 51% | QUANTITY | 0.93+ |
Farage | ORGANIZATION | 0.92+ |
intel dot com | ORGANIZATION | 0.9+ |
intel | ORGANIZATION | 0.9+ |
this morning | DATE | 0.89+ |
one cloud | QUANTITY | 0.88+ |
San Diego Zoo | LOCATION | 0.87+ |
99 | QUANTITY | 0.86+ |
one container | QUANTITY | 0.86+ |
one environment | QUANTITY | 0.86+ |
2019 | DATE | 0.85+ |
half | QUANTITY | 0.85+ |
one place | QUANTITY | 0.84+ |
least two years | QUANTITY | 0.83+ |
Dev Cloud | TITLE | 0.81+ |
monger | PERSON | 0.77+ |
time | QUANTITY | 0.76+ |
I five | OTHER | 0.76+ |
P. G | PERSON | 0.75+ |
red hat | TITLE | 0.74+ |
two of | QUANTITY | 0.73+ |
Brest | ORGANIZATION | 0.63+ |
nine | TITLE | 0.61+ |
86 | OTHER | 0.58+ |
devices | QUANTITY | 0.56+ |
things | QUANTITY | 0.51+ |
five G | OTHER | 0.49+ |
86 | QUANTITY | 0.48+ |
Cloud | TITLE | 0.46+ |
seven | COMMERCIAL_ITEM | 0.4+ |
dot | ORGANIZATION | 0.34+ |
cloud | TITLE | 0.32+ |