Image Title

Search Results for Command Alkon:

Venkat Venkataramani, Rockset & Doug Moore, Command Alkon | AWS Startup Showcase S2 E2


 

(upbeat music) >> Hey everyone. Welcome to theCUBE's presentation of the AWS Startup Showcase. This is Data as Code, The Future of Enterprise Data and Analytics. This is also season two, episode two of our ongoing series with exciting partners from the AWS ecosystem who are here to talk with us about data and analytics. I'm your host, Lisa Martin. Two guests join me, one, a cube alumni. Venkat Venkataramani is here CEO & Co-Founder of Rockset. Good to see you again. And Doug Moore, VP of cloud platforms at Command Alkon. You're here to talk to me about how Command Alkon implemented real time analytics in just days with Rockset. Guys, welcome to the program. >> Thanks for having us. >> Yeah, great to be here. >> Doug, give us a little bit of a overview of Command Alkon, what type of business you are? what your mission is? That good stuff. >> Yeah, great. I'll pref it by saying I've been in this industry for only three years. The 30 years prior I was in financial services. So this was really exciting and eye opening. It actually plays into the story of how we met Rockset. So that's why I wanted to preface that. But Command Alkon is in the business, is in the what's called The Heavy Building Materials Industry. And I had never heard of it until I got here. But if you think about large projects like building buildings, cities, roads anything that requires concrete asphalt or just really big trucks, full of bulky materials that's the heavy building materials industry. So for over 40 years Command Alkon has been the north American leader in providing software to quarries and production facilities to help mine and load these materials and to produce them and then get them to the job site. So that's what our supply chain is, is from the quarry through the development of these materials, then out to the to a heavy building material job site. >> Got it, and now how historically in the past has the movement of construction materials been coordinated? What was that like before you guys came on the scene? >> You'll love this answer. So 'cause, again, it's like a step back in time. When I got here the people told me that we're trying to come up with the platform that there are 27 industries studied globally. And our industry is second to last in terms of automation which meant that literally everything is still being done with paper and a lot of paper. So when one of those, let's say material is developed, concrete asphalt is produced and then needs to get to the job site. They start by creating a five part printed ticket or delivery description that then goes to multiple parties. It ends up getting touched physically over 50 times for every delivery. And to give you some idea what kind of scale it is there are over 330 million of these type deliveries in north America every year. So it's really a lot of favor and a lot of manual work. So that was the state of really where we were. And obviously there are compelling reasons certainly today but even 3, 4, 5 years ago to automate that and digitize it. >> Wow, tremendous potential to go nowhere but up with the amount of paper, the lack of, of automation. So, you guys Command Alkon built a platform, a cloud software construction software platform. Talk to me of about that. Why you built it, what was the compelling event? I mean, I think you've kind of already explained the compelling event of all the paper but give us a little bit more context. >> Yeah. That was the original. And then we'll get into what happened two years ago which has made it even more compelling but essentially with everything on premises there's really in a huge amount of inefficiency. So, people have heard the enormous numbers that it takes to build up a highway or a really large construction project. And a lot of that is tied up in these inefficiencies. So we felt like with our significant presence in this market, that if we could figure out how to automate getting this data into the cloud so that at least the partners in the supply chain could begin sharing information. That's not on paper a little bit closer to real time that we could make has an impact on everything from the timing it takes to do a project to even the amount of carbon dioxide that's admitted, for example from trucks running around and being delayed and not being coordinated well. >> So you built the connect platform you started on Amazon DynamoDB and ran into some performance challenges. Talk to us about the, some of those performance bottlenecks and how you found Venkat and Rockset. >> So from the beginning, we were fortunate, if you start building a cloud three years ago you're you have a lot of opportunity to use some of the what we call more fully managed or serverless offerings from Amazon and all the cloud vendors have them but Amazon is the one we're most familiar with throughout the past 10 years. So we went head first into saying, we're going to do everything we can to not manage infrastructure ourselves. So we can really focus on solving this problem efficiently. And it paid off great. And so we chose dynamo as our primary database and it still was a great decision. We have obviously hundreds of millions of billions of these data points in dynamo. And it's great from a transactional perspective, but at some point you need to get the data back out. And what plays into the story of the beginning when I came here with no background basically in this industry, is that, and as did most of the other people on my team, we weren't really sure what questions were going to be asked of the data. And that's super, super important with a NoSQL database like dynamo. You sort of have to know in advance what those usage patterns are going to be and what people are going to want to get back out of it. And that's what really began to strain us on both performance and just availability of information. >> Got it. Venkat, let's bring you into the conversation. Talk to me about some of the challenges that Doug articulated the, is industry with such little automation so much paper. Are you finding that still out there for in quite a few industries that really have nowhere to go but up? >> I think that's a very good point. We talk about digital transformation 2.0 as like this abstract thing. And then you meet like disruptors and innovators like Doug, and you realize how much impact, it has on the real world. But now it's not just about disrupting, and digitizing all of these records but doing it at a faster pace than ever before, right. I think this is really what digital transformation in the cloud really enable tools you do that, a small team in a, with a very very big mission and responsibility like what Doug team have been, shepherding here. They're able to move very, very, very fast, to be able to kind of accelerate this. And, they're not only on the forefront of digitizing and transforming a very big, paper-heavy kind of process, but real-time analytics and real time reporting is a requirement, right? Nobody's wondering where is my supply chain three days ago? Are my, one of the most important thing in heavy construction is to keep running on a schedule. If you fall behind, there's no way to catch up because there's so many things that falls apart. Now, how do you make sure you don't fall behind, realtime analytics and realtime reporting on how many trucks are supposed to be delivered today? Halfway through the day, are they on track? Are they getting behind? And all of those things is not just able to manage the data but also be able to get reporting and analytics on that is a extremely important aspect of this. So this is like a combination of digital transformation happening in the cloud in realtime and realtime analytics being in the forefront of it. And so we are very, very happy to partner with digital disruptors like Doug and his team to be part of this movement. >> Doug, as Venkat mentioned, access to real time data is a requirement that is just simple truth these days. I'm just curious, compelling event wise was COVID and accelerator? 'Cause we all know of the supply chain challenges that we're all facing in one way or the other, was that part of the compelling event that had you guys go and say, we want to do DynamoDB plus Rockset? >> Yeah, that is a fantastic question. In fact, more so than you can imagine. So anytime you come into an industry and you're going to try to completely change or revolutionize the way it operates it takes a long time to get the message out. Sometimes years, I remember in insurance it took almost 10 years really to get that message out and get great adoption and then COVID came along. And when COVID came along, we all of a sudden had a situation where drivers and the foreman on the job site didn't want to exchange the paperwork. I heard one story of a driver taping the ticket for signature to the foreman on a broomstick and putting it out his windows so that he didn't get too close. It really was that dramatic. And again, this is the early days and no one really has any idea what's happening and we're all working from home. So we launched, we saw that as an opportunity to really help people solve that problem and understand more what this transformation would mean in the long term. So we launched internally what we called Project Lemonade obviously from, make lemonade out of lemons, that's the situation that we were in and we immediately made some enhancements to a mobile app and then launched that to the field. So that basically there's now a digital acceptance capability where the driver can just stay in the vehicle and the foreman can be anywhere, look at the material say it's acceptable for delivery and go from there. So yeah, it made a, it actually immediately caused many of our customers hundreds to begin, to want to push their data to the cloud for that reason just to take advantage of that one capability >> Project lemonade, sounds like it's made a lot of lemonade out of a lot of lemons. Can you comment Doug on kind of the larger trend of real time analytics and logistics? >> Yeah, obviously, and this is something I didn't think about much either not knowing anything about concrete other than it was in my driveway before I got here. And that it's a perishable product and you've got that basically no more than about an hour and a half from the time you mix it, put it in the drum and get it to the job site and pour it. And then the next one has to come behind it. And I remember I, the trend is that we can't really do that on paper anymore and stay on top of what has to be done we'll get into the field. So a foreman, I recall saying that when you're in the field waiting on delivery, that you have people standing around and preparing the site ready to make a pour that two minutes is an eternity. And so, working a real time is all always a controversial word because it means something different to anyone, but that gave it real, a real clarity to mean, what it really meant to have real time analytics and how we are doing and where are my vehicles and how is this job performing today? And I think that a lot of people are still trying to figure out how to do that. And fortunately, we found a great tool set that's allowing us to do that at scale. Thankfully, for Rockset primarily. >> Venkat talk about it from your perspective the larger trend of real time analytics not just in logistics, but in other key industries. >> Yeah. I think we're seeing this across the board. I think, whether, even we see a huge trend even within an enterprise different teams from the marketing team to the support teams to more and more business operations team to the security team, really moving more and more of their use cases from real time. So we see this, the industries that are the innovators and the pioneers here are the ones for whom real times that requirement like Doug and his team here or where, if it is all news, it's no news, it's useless, right? But I think even within, across all industries, whether it is, gaming whether it is, FinTech, Bino related companies, e-learning platforms, so across, ed tech and so many different platforms, there is always this need for business operations. Some, certain aspects certain teams within large organizations to, have to tell me how to win the game and not like, play Monday morning quarterback after the game is over. >> Right, Doug, let's go back at you, I'm curious with connects, have you been able to scale the platform since you integrated with Rockset? Talk to us about some of the outcomes that you've achieved so far? >> Yeah, we have, and of course we knew and we made our database selection with dynamo that it really doesn't have a top end in terms of how much information that we can throw at it. But that's very, very challenging when it comes to using that information from reporting. But we've found the same thing as we've scaled the analytics side with Rockset indexing and searching of that database. So the scale in terms of the number of customers and the amount of data we've been able to take on has been, not been a problem. And honestly, for the first time in my career, I can say that we've always had to add people every time we add a certain number of customers. And that has absolutely not been the case with this platform. >> Well, and I imagine the team that you do have is far more, sorry Venkat, far more strategic and able to focus on bigger projects. >> It, is, and, you've amazed at, I mean Venkat hit on a couple of points that it's in terms of the adoption of analytics. What we found is that we are as big a customer of this analytic engine as our customers are because our marketing team and our sales team are always coming to us. Well how many customers are doing this? How many partners are connected in this way? Which feature flags are turned on the platform? And the way this works is all data that we push into the platform is automatically just indexed and ready for reporting analytics. So we really it's no additional ad of work, to answer these questions, which is really been phenomenal. >> I think the thing I want to add here is the speed at which they were able to build a scalable solution and also how little, operational and administrative overhead that it has cost of their teams, right. I think, this is again, realtime analytics. If you go and ask hundred people, do you want fast analytics on realtime data or slow analytics on scale data, people, no one would say give me slow and scale. So, I think it goes back to again our fundamental pieces that you have to remove all the cost and complexity barriers for realtime analytics to be the new default, right? Today companies try to get away with batch and the pioneers and the innovators are forced to solve, I know, kind of like address some of these realtime analytics challenges. I think with the platforms like the realtime analytics platform, like Rockset, we want to completely flip it on its head. You can do everything in real time. And there may be some extreme situations where you're dealing with like, hundreds of petabytes of data and you just need an analyst to generate like, quarterly reports out of that, go ahead and use some really, really good batch base system but you should be able to get anything, and everything you want without additional cost or complexity, in real time. That is really the vision. That is what we are really enabling here. >> Venkat, I want to also get your perspective and Doug I'd like your perspective on this as well but that is the role of cloud native and serverless technologies in digital disruption. And what do you see there? >> Yeah, I think it's huge. I think, again and again, every customer, and we meet, Command Alkon and Doug and his team is a great example of this where they really want to spend as much time and energies and calories that they have to, help their business, right? Like what, are we accomplishing trying to accomplish as a business? How do we enable, how do we build better products? How do we grow revenue? How do we eliminate risk that is inherent in the business? And that is really where they want to spend all of their energy not trying to like, install some backend software, administer build IDL pipelines and so on and so forth. And so, doing serverless on the compute side of that things like AWS lambda does and what have you. And, it's a very important innovation but that isn't, complete the story or your data stack also have to become serverless. And, that is really the vision with Rockset that your entire realtime analytics stack can be operating and managing. It could be as simple as managing a serverless stack for your compute environments like your APS servers and what have you. And so I think that is going to be a that is for here to stay. This is a path towards simplicity and simplicity scales really, really well, right? Complexity will always be the killer that'll limit, how far you can use this solution and how many problems can you solve with that solution? So, simplicity is a very, very important aspect here. And serverless helps you, deliver that. >> And Doug your thoughts on cloud native and serverless in terms of digital disruption >> Great point, and there are two parts to the scalability part. The second one is the one that's more subtle unless you're in charge of the budget. And that is, with enough effort and enough money that you can make almost any technology scale whether it's multiple copies of it, it may take a long time to get there but you can get there with most technologies but what is least scalable, at least that I as I see that this industry is the people, everybody knows we have a talent shortage and these other ways of getting the real time analytics and scaling infrastructure for compute and database storage, it really takes a highly skilled set of resources. And the more your company grows, the more of those you need. And that is what we really can't find. And that's actually what drove our team in our last industry to even go this way we reached a point where our growth was limited by the people we could find. And so we really wanted to break out of that. So now we had the best of both scalable people because we don't have to scale them and scalable technology. >> Excellent. The best of both worlds. Isn't it great when those two things come together? Gentlemen, thank you so much for joining me on "theCUBE" today. Talking about what Rockset and Command Alkon are doing together better together what you're enabling from a supply chain digitization perspective. We appreciate your insights. >> Great. Thank you. >> Thanks, Lisa. Thanks for having us. >> My pleasure. For Doug Moore and Venkat Venkatramani, I'm Lisa Martin. Keep it right here for more coverage of "theCUBE", your leader in high tech event coverage. (upbeat music)

Published Date : Mar 30 2022

SUMMARY :

Good to see you again. what type of business you are? and to produce them and then And to give you some idea Talk to me of about that. And a lot of that is tied and how you found Venkat and Rockset. and as did most of the that really have nowhere to go but up? and his team to be part of this movement. and say, we want to do and then launched that to the field. kind of the larger trend and get it to the job site and pour it. the larger trend of real time analytics team to the support teams And that has absolutely not been the case and able to focus on bigger projects. that it's in terms of the and the pioneers and the but that is the role of cloud native And so I think that is going to be a And that is what we really can't find. and Command Alkon are doing Thank you. Moore and Venkat Venkatramani,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Lisa MartinPERSON

0.99+

Doug MoorePERSON

0.99+

DougPERSON

0.99+

Venkat VenkataramaniPERSON

0.99+

Command AlkonORGANIZATION

0.99+

RocksetORGANIZATION

0.99+

LisaPERSON

0.99+

Doug MoorePERSON

0.99+

AmazonORGANIZATION

0.99+

Two guestsQUANTITY

0.99+

AWSORGANIZATION

0.99+

27 industriesQUANTITY

0.99+

two minutesQUANTITY

0.99+

bothQUANTITY

0.99+

VenkatORGANIZATION

0.99+

north AmericaLOCATION

0.99+

Monday morningDATE

0.99+

two partsQUANTITY

0.99+

over 50 timesQUANTITY

0.99+

oneQUANTITY

0.99+

over 330 millionQUANTITY

0.99+

Venkat VenkatramaniPERSON

0.99+

hundred peopleQUANTITY

0.99+

three days agoDATE

0.99+

two thingsQUANTITY

0.99+

over 40 yearsQUANTITY

0.99+

two years agoDATE

0.98+

three years agoDATE

0.98+

secondQUANTITY

0.98+

five partQUANTITY

0.98+

first timeQUANTITY

0.98+

todayDATE

0.98+

VenkatPERSON

0.97+

hundredsQUANTITY

0.97+

30 years priorDATE

0.97+

both worldsQUANTITY

0.97+

TodayDATE

0.97+

three yearsQUANTITY

0.96+

one storyQUANTITY

0.95+

DynamoDBTITLE

0.94+

almost 10 yearsQUANTITY

0.94+

hundreds of millions of billionsQUANTITY

0.93+

dynamoORGANIZATION

0.92+

second oneQUANTITY

0.91+

about an hour and a halfQUANTITY

0.9+

theCUBEORGANIZATION

0.9+

NoSQLTITLE

0.89+

3DATE

0.87+

BinoORGANIZATION

0.85+

past 10 yearsDATE

0.84+

every yearQUANTITY

0.84+

DougORGANIZATION

0.83+

AnalyticsTITLE

0.83+

5 years agoDATE

0.82+

north AmericanOTHER

0.81+

Startup ShowcaseEVENT

0.81+

Venkat Venkataramani and Dhruba Borthakur, Rockset | CUIBE Conversation


 

(bright intro music) >> Welcome to this "Cube Conversation". I'm your host, Lisa Martin. This is part of our third AWS Start-up Showcase. And I'm pleased to welcome two gentlemen from Rockset, Venkat Venkataramani is here, the CEO and co-founder and Dhruba Borthakur, CTO and co-founder. Gentlemen, welcome to the program. >> Thanks for having us. >> Thank you. >> Excited to learn more about Rockset, Venkat, talk to me about Rockset and how it's putting real-time analytics within the reach of every company. >> If you see the confluent IPO, if you see where the world is going in terms of analytics, I know, we look at this, real-time analytics is like the lost frontier. Everybody wants fast queries on fresh data. Nobody wants to say, "I don't need that. You know, give me slow queries on stale data," right? I think if you see what data warehouses and data lakes have done, especially in the cloud, they've really, really made batch analytics extremely accessible, but real-time analytics still seems too clumsy, too complex, and too expensive for most people. And we are on a mission to make, you know, real-time analytics, make it very, very easy and affordable for everybody to be able to take advantage of that. So that's our, that's what we do. >> But you're right, nobody wants a stale data or slower queries. And it seems like one of the things that we learned, Venkat, sticking with you in the last 18 months of a very strange world that we're living in, is that real-time is no longer a nice to have. It's really a differentiator and table stakes for businesses in every industry. How do you make it more affordable and accessible to businesses in so many different industries? >> I think that's a great question. I think there are, at a very high level, there are two categories of use cases we see. I think there is one full category of use cases where business teams and business units are demanding almost like business observability. You know, if you think about one domain that actually understood real-time and made everything work in real-time is the DevOps world, you know, metrics and monitoring coming out of like, you know, all these machines and because they really want to know as soon as something goes wrong, immediately, I want to, you know, be able to dive in and click and see what happens. But now businesses are demanding the same thing, right? Like a CEO wants to know, "Are we on track to hit our quarterly estimates or not? And tell me now what's happening," because you know, the larger the company, the more complex that have any operations dashboards are. And, you know, if you don't give them real-time visibility, the window of opportunity to do something about it disappears. And so they are really, businesses is really demanding that. And so that is one big use case we have. And the other strange thing we're also seeing is that customers are demanding real-time even from the products they are using. So you could be using a SaaS product for sales automation, support automation, marketing automation. Now I don't want to use a product if it doesn't have real-time analytics baked into the product itself. And so all these software companies, you know, providing a SaaS service to their cloud customers and clients, they are also looking to actually, you know, their proof of value really comes from the analytics that they can show within the product. And if that is not interactive and real-time, then they are also going to be left behind. So it's really a huge differentiator whether you're building a software product or your running a business, the real-time observability gives you a window of opportunity to actually do something about, you know, when something goes wrong, you can actually act on it very, very quickly. >> Right, which is absolutely critical. Dhruba, I want to get your take on this. As the CTO and co-founder as I introduced you, what were some of the gaps in the market back in 2016 that you saw that really necessitated the development of this technology? >> Yeah, for real-time analytics, the difference compared to what it was earlier is that all your things used to be a lot of batch processes. Again, the reason being because there was something called MapReduce, and that was a scanning system that was kind of a invention from Google, which talked about processing big data sets. And it was about scanning, scanning large data sets to give answers. Whereas for real-time analytics, the new trend is that how can you index these big datasets so that you can answer queries really fast? So this is what Rockset does as well, is that we have capabilities to index humongous amounts of data cheaply, efficiently, and economically feasible for our customers. And that's why query is the leverage the index to give fast (indistinct). This is one of the big changes. The other change obviously is that it has moved to the cloud, right? A lot of analytics have moved to the cloud. So Rockset is built natively for the cloud, which is why we can scale up, scale down resources when queries come and we can provide a great (indistinct) for people as data latency, and as far as query latencies comes on, both of these things. So these two trends, I think, are kind of the power behind moving, making people use more real-time analytics. >> Right, and as Venkat was talking about how it's an absolute differentiator for businesses, you know, last year we saw this really, this quick, all these quick pivots to survive and ultimately thrive. And we're seeing the businesses now coming out of this, that we're able to do that, and we're able to pivot to digital, to be successful and to out-compete those who maybe were not as fast. I saw that recently, Venkat, you guys had a new product release a few weeks ago, major product release, that is making real-time analytics on streaming data sources like Apache Kafka, Amazon Kinesis, Amazon DynamoDB, and data lakes a lot more accessible and affordable. Breakdown that launch for me, and how is it doing the accessibility and affordability that you talked about before? >> Extremely good question. So we're really excited about what we call SQL-based roll-ups, is what we call that release. So what does that do? So if you think about real-time analytics and even teeing off the previous question you asked on what is the gap in the market? The gap in the market is really, all that houses and lakes are built for batch. You know, they're really good at letting people accumulate huge volumes of data, and once a week, analyst asking a question, generating a report, and everybody's looking at it. And with real-time, the data never stops coming. The queries never stop coming. So how do you, if I want real-time metrics on all this huge volumes of data coming in, now if I drain it into a huge data lake and then I'm doing analytics on that, it gets very expensive and very complex very quickly. And so the new release that we had is called SQL-based roll-ups, where simply using SQL, you can define any real-time metric that you want to track across any dimensions you care about. It could be geo demographic and other dimensions you care about that and Rockset will automatically maintain all those real-time metrics for you in real-time in a highly accurate fashion. So you never have to doubt whether the metrics are valid and it will be accurate up to the second. And the best part is you don't have to learn a new language. You can actually use SQL to define those metrics and Rockset will automatically maintain that and scale that for you in the cloud. And that, I think, reduces the barrier. So like if somebody wants to build a real-time, you know, track something for their business in real-time, you know, you have to duct tape together multiple, disparate components and systems that were never meant to work with each other. Now you have a real-time database built for the cloud that is fully, you know, supports full feature SQL. So you can do this in a matter of minutes, which would probably take you days or weeks with alternate technologies. >> That's a dramatic X reduction in time there. I want to mention the Snowflake IPO since you guys mentioned the Confluent IPO. You say that Rockset does for real-time, what Snowflake did for batch. Dhruba, I want to get your perspective on that. Tell me about that. What do you mean by that? >> Yeah, so like we see this trend in the market where lot of analytics, which are very batch, they get a lot of value if they've moved more real-time, right? Like Venkat mentioned, when analytics powers, actual products, which need to use analytics into their, to make the product better. So Rockset very much plays in this area. So Rockset is the only solution. I shouldn't say solution. It's a database, it's a real-time database, which powers these kind of analytic systems. If you don't use Rockset, then you might be using maybe a warehouse or something, but you cannot get real-time because there is always a latency of putting data into the warehouse. It could be minutes, it could be hours. And then also you don't get too many people making concurrent queries on the warehouse. So this is another difference for real-time analytics because it powers applications, the query volume could be large. So that's why you need a real-time database and not a real-time warehouse or any other technologies for this. And this trend has really caught up because most people have either, are pretty much into this journey. You asked me this previous question about what has changed since 2016 as well. And this is a journey that most enterprises we see are already embarking upon. >> One thing too, that we're seeing is that more and more applications are becoming data intensive applications, right? We think of whether it's Instagram or DoorDash or whatnot, or even our banking app, we expect to have the information updated immediately. How do you help, Dhruba, sticking with you, how do you help businesses build and power those data intensive applications that the consumers are demanding? >> That's a great question. And we have booked, me and Venkat, we have seen these data applications at large scale when we were at Facebook earlier. We were both parts of the Facebook team. So we saw how real-time was really important for building that kind of a business, that was social media. But now we are taking the same kind of back ends, which can scale to like huge volumes of data to the enterprises as well. Venkat, do you have anything to add? >> Yeah, I think when you're trying to go from batch to real-time, you're 100% spot on that, a static report, a static dashboard actually becomes an application, becomes a data application, and it has to be interactive. So you're not just showing a newspaper where you just get to read. You want to click and deep dive, do slice and dice the data to not only understand what happened, but why it happened and come up with hypotheses to figure out what I want to do with it. So the interactivity is important and the real-timeliness now it becomes important. So the way we think about it is like, once you go into real-time analytics, you know, the data never stops coming. That's obvious. Data freshness is important. But the queries never stop coming also because one, when your dashboards and metrics are getting up to date real-time, you really want alerts and anomaly detection to be automatically built in. And so you don't even have to look at the graphs once a week. When something is off, the system will come and tap on your shoulder and say, "Hey, something is going on." And so that really is a real-time application at that point, because it's constantly looking at the data and querying on your behalf and only alerting you when something, actually, is interesting happening that you might need to look at. So yeah, the whole movement towards data applications and data intensive apps is a huge use case for us. I think most of our customers, I would say, are building a data application in one shape or form or another. >> And if I think of use cases like cutthroat customer 360, you know, as customers and consumers of whatever product or solution we're talking about, we expect that these brands know who we are, know what we've done with them, what we've bought, what to show me next is what I expect whether again, it's my bank or it's Instagram or something else. So that personalization approach is absolutely critical, and I imagine another big game changer, differentiator for the customers that use Rockset. What do you guys think about that? >> Absolutely, personalized recommendation is a huge use case. We see this all where we have, you know, Ritual is one of the customers. We have a case study on that, I think. They want to personalize. They generate offline recommendations for anything that the user is buying, but they want to use behavioral data from the product to personalize that experience and combine the two before they serve anything on the checkout lane, right? We also see in B2B companies, real-time analytics and data applications becoming a very important thing. And we have another customer, Command Alkon, who, you know, they have a supply chain platform for heavy construction and 80% of concrete in North America flows through their platform, for example. And what they want to know in real-time is reporting on how many concrete trucks are arriving at a big construction site, which ones are late and whatnot. And the real-time, you know, analytics needs to be accurate and needs to be, you know, up to the second, you know, don't tell me what trucks were, you know, coming like an hour ago. No, I need this right now. And so even in a B2B platform, we see that very similar trend trend where real-time reporting, real-time search, real-time indexing is actually a very, very important piece to the puzzle. And not just for B to C examples that you said, and the Instagram comment is also very appropriate because a hedge fund customer came to us and said, "I have kind of a dashboards built on top of like Snowflake. They're taking two to five seconds and I have certain parts of my dashboards, but I am actually having 50/60 visualizations. You do the math, it takes many minutes to load. And so they said, "Hey, you have some indexing deck. Can you make this faster?" Three weeks later, the queries that would take two to five seconds on a traditional warehouse or a cloud data warehouse came back in 18 milliseconds with Rockset. And so it is so fast that they said, you know, "If my internal dashboards are not as fast as Instagram, no one in my company uses it." These are their words. And so they are really, you know, the speed is really, really important. The scale is really, really important. Data freshness is important. If you combine all of these things and also make it simple for people to access with SQL-based, that's really the real unique value prop that we have a Rockset, which is what our customers love. >> You brought up something interesting, Venkat, that kind of made me think of the employee experience. You know, we always think of the customer 360. The customer experience with the employee experience, in my opinion, is inextricably linked. The employees have to have access to what they need to deliver and help these great customer relationships. And as you were saying, you know, the employees are expecting databases to be as fast as they see on Instagram, when they're, you know, surfing on their free time. Then adoption, I imagine, gets better, obviously, than the benefit from the end user and customers' perspective is that speed. Talk to me a little bit about how Rockset, and I would like to get both of your opinions here, is a facilitator of that employee productivity for your customers. >> This is a great question. In fact, the same hedge fund, you know, customer, I pushed them to go and measure how many times do people even look at all the data that you produce? (laughs) How many analysts and investors actually use your dashboards and ask them to go investigate at that. And one of the things that they eventually showed me was there was a huge uptake and their dashboards went from two to three second kind of like, you know, lags to 18 milliseconds. They almost got the daily active user for their own internal dashboards to be almost going from five people to the entire company, you know, so I think you're absolutely spot on. So it really goes back to, you know, really leveraging the data and actually doing something about it. Like, you know, if I ask a question and it's going to, you know, system is going to take 20 minutes to answer that, you know, I will probably not ask as many questions as I want to. When it becomes interactive and very, very fast, and all of a sudden, I not only start with a question and, you know, I can ask a follow-up question and then another follow-up question and make it really drive that to, you know, a conclusion and I can actually act upon it. And this really accelerates. So even if you kind of like, look at the macro, you hear these phrases, the world is going from batch to real-time, and in my opinion, when I look at this, people want to, you know, accelerate their growth. People want to make faster decisions. People want to get to, what can I do about this and get actionable insights. And that is not really going to come from systems that take 20 minutes to give a response. It's going to really come from systems that are interactive and real-time, and that's really the need for acceleration is what's really driving this movement from batch to real-time. And we're very happy to facilitate that and accelerate that moment. >> And it really drives the opportunity for your customers to monetize more and more data so that they can actually act on it, as you said, in real-time and do something about it, whether it's a positive experience or it is, you know, remediating a challenge. Last question guys, since we're almost out of time here, but I want to understand, talk to me about the Rockset-AWS partnership and what the value is for your customers. >> Okay, yeah. I'll get to that in a second, but I wanted to add something to your previous question. I think my opinion for all the customers that we see is that real-time analytics is addictive. Once they get used to it, they can go back to the old stuff. So this is what we have found with all our customers. So, yeah, for the AWS question, I think maybe Venkat can answer that better than me. >> Yeah, I mean, we love partnering with AWS. I think, they are the world's leader when it comes to public clouds. We have a lot of joint happy customers that are all AWS customers. Rockset is entirely built on top of AWS, and we love that. And there is a lot of integrations that Rockset natively comes with. So if you're already managing your data in AWS, you know, there are no data transfer costs or anything like that involved for you to also, you know, index that data in Rockset and actually build real-time applications and stream the data to Rockset. So I think the partnership goes in very, very deep in terms of like, we are an AWS customer, we are a partner and we, you know, our go-to market teams work with them. And so, yeah, we're very, very happy, you know, like, AWS fanboys here, yeah. >> Excellent, it sounds like a very great synergistic collaborative relationship, and I love, Dhruba, what you said. This is like, this is a great quote. "Real-time analytics is addictive." That sounds to me like a good addiction (all subtly laugh) for businesses and every industry to take out. Guys, it's been a pleasure talking to you. Thank you for joining me, talking to the audience about Rockset, what differentiates you, and how you're helping customers really improve their customer productivity, their employee productivity, and beyond. We appreciate your time. >> Thanks, Lisa. >> Thank you, thanks a lot. >> For my guests, I'm Lisa Martin. You're watching this "Cube Conversation". (bright ending music)

Published Date : Sep 14 2021

SUMMARY :

And I'm pleased to welcome the reach of every company. And we are on a mission to make, you know, How do you make it more is the DevOps world, you know, that you saw that really the new trend is that how can you index for businesses, you know, And the best part is you don't What do you mean by that? And then also you don't that the consumers are demanding? Venkat, do you have anything to add? that you might need to look at. you know, as customers and And the real-time, you And as you were saying, you know, So it really goes back to, you know, a positive experience or it is, you know, the customers that we see and stream the data to Rockset. and I love, Dhruba, what you said. For my guests, I'm Lisa Martin.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Lisa MartinPERSON

0.99+

AWSORGANIZATION

0.99+

RocksetORGANIZATION

0.99+

FacebookORGANIZATION

0.99+

20 minutesQUANTITY

0.99+

Dhruba BorthakurPERSON

0.99+

2016DATE

0.99+

twoQUANTITY

0.99+

80%QUANTITY

0.99+

100%QUANTITY

0.99+

LisaPERSON

0.99+

five peopleQUANTITY

0.99+

last yearDATE

0.99+

GoogleORGANIZATION

0.99+

five secondsQUANTITY

0.99+

AmazonORGANIZATION

0.99+

oneQUANTITY

0.99+

Venkat VenkataramaniPERSON

0.99+

North AmericaLOCATION

0.99+

two categoriesQUANTITY

0.99+

18 millisecondsQUANTITY

0.99+

bothQUANTITY

0.99+

InstagramORGANIZATION

0.99+

DhrubaORGANIZATION

0.99+

SQLTITLE

0.99+

SnowflakeORGANIZATION

0.98+

one domainQUANTITY

0.98+

two gentlemenQUANTITY

0.98+

thirdQUANTITY

0.98+

Three weeks laterDATE

0.97+

three secondQUANTITY

0.97+

two trendsQUANTITY

0.97+

One thingQUANTITY

0.96+

secondQUANTITY

0.96+

VenkatORGANIZATION

0.95+

RitualORGANIZATION

0.93+

an hour agoDATE

0.92+

both partsQUANTITY

0.91+

once a weekQUANTITY

0.91+

SnowflakeTITLE

0.9+

one big use caseQUANTITY

0.89+

50/60QUANTITY

0.89+

few weeks agoDATE

0.87+

one shapeQUANTITY

0.86+

Cube ConversationTITLE

0.84+