Rob Thomas, IBM | IBM Think 2019
>> Live from San Francisco. It's the cube covering IBM thing twenty nineteen brought to you by IBM. >> Okay. Welcome back, everyone. He live in San Francisco. Here on Mosconi St for the cubes. Exclusive coverage of IBM. Think twenty nineteen. I'm Jeffrey David Long. Four days of coverage bringing on all the action talking. The top executives, entrepreneurs, ecosystem partners and everyone who can bring the signal from the noise here on the Q and excuses. Rob Thomas, general manager, IBM Data and a I with an IBM Cube Alumni. Great to see you again. >> Great. There you go. >> You read a >> book yet? This year we've written ten books on a data. Your general manager. There's >> too much work. Not enough time >> for that's. Good sign. It means you're working hard. Okay. Give us give us the data here because a I anywhere in the center of the announcements we have a story up on. Slick earnings have been reported on CNBC. John Ford was here earlier talking to Ginny. This is a course centerpiece of it. Aye, aye. On any cloud. This highlights the data conversation you've been part of. Now, I think what seven years seems like more. But this is now happening. Give us your thoughts. >> Go back to basics. I've shared this with you before. There's no AI without IA, meaning you need an information architecture to support what you want to do in AI. We started looking into that. Our thesis became so clients are buying into that idea. The problem is their data is everywhere onpremise, private cloud, multiple public clouds. So our thesis became very simple. If we can bring AI to the data, it will make Watson the leading AI platform. So what we announced wtih Watson Anywhere is you could now have it wherever your data is public, private, any public cloud, build the models, run them where you want. I think it's gonna be amazing >> data everywhere and anywhere. So containers are big role in This is a little bit of a deb ops. The world you've been living in convergence of data cloud. How does that set for clients up? What are they need to know about this announcement? Was the impact of them if any >> way that we enable Multi Cloud and Watson anywhere is through IBM cloud private for data? That's our data Micro services architectural writing on Cooper Netease that gives you the portability so that it can run anywhere because, in addition Teo, I'd say, Aye, aye, ambitions. The other big client ambition is around how we modernize to cloud native architectures. Mohr compose herbal services, so the combination gets delivered. Is part of this. >> So this notion of you can't have a eye without a it's It's obviously a great tagline. You use it a lot, but it's super important because there's a gap between those who sort of have a I chops and those who don't. And if I understand what you're doing is you're closing that gap by allowing you to bring you call that a eye to the data is it's sort of a silo buster in regard. Er yeah, >> the model we use. I called the eye ladder. So they give it as all the levels of sophistication an organization needs to think about. From how you collect data, how you organize data, analyze data and then infused data with a I. That's kind of the model that we used to talk about. Talk to clients about that. What we're able to do here is same. You don't have to move your data. The biggest problem Modi projects is the first task is OK move a bunch of data that takes a lot of time. That takes a lot of money. We say you don't need to do that. Leave your data wherever it is. With Cloud private for data, we can virtualized data from any source. That's kind of the ah ha moment people have when they see that. So we're making that piece really >> easy. What's the impact this year and IBM? Think to the part product portfolio. You You had data products in the past. Now you got a eye products. Any changes? How should people live in the latter schism? A kind of a rubric or a view of where they fit into it? But what's up with the products and he changes? People should know about? >> Well, we've brought together the analytics and I units and IBM into this new organization we call Dayton ay, ay, that's a reflection of us. Seen that as two sides of the same coin. I really couldn't really keep them separate. We've really simplified how we're going to market with the Watson products. It's about how you build run Manager II watching studio Watson Machine Learning Watson Open scale. That's for clients that want to build their own. Aye, aye. For clients that wants something out of the box. They want an application. We've got Watson assistant for customer service. Watson Discovery, Watson Health Outset. So we've made it really easy to consume Watson. Whether you want to build your own or you want an application designed for the line of business and then up and down the data, stack a bunch of different announcements. We're bringing out big sequel on Cloudera as part of our evolving partnership with the new Cloudera Horn Works entity. Virtual Data Pipeline is a partnership that we've built with active fio, so we're doing things at all layers of the last. >> You're simplifying the consumption from a client, your customer perspective. It's all data. It's all Watson's, the umbrella for brand for everything underneath that from a tizzy, right? >> Yeah, Watson is the Aye, aye, brand. It is a technology that's having an impact. We have amazing clients on stage with this this week talking about, Hey, Eyes No longer. I'd like to say I was not magic. It's no longer this mystical thing. We have clients that are getting real outcomes. Who they II today we've got Rollback of Scotland talking about how they've automated and augmented forty percent of their customer service with watching the system. So we've got great clients talking about other using >> I today. You seen any patterns, rob in terms of those customers you mentioned, some customers want to do their own. Aye, aye. Some customers wanted out of the box. What? The patterns that you're seeing in terms of who wants to do their own. Aye. Aye. Why do they want to do their own, eh? I do. They get some kind of competitive advantage. So they have additional skill sets that they need. >> It's a >> It's a maker's mark. It is how I would describe it. There's a lot of people that want to make their own and try their own. Ugh. I think most organizations, they're gonna end up with hundreds of different tools for building for running. This is why we introduced Watson Open Scale at the end of last year. That's How would you manage all of your A II environments? What did they come from? IBM or not? Because you got the and the organization has to have this manageable. Understandable, regardless of which tool they're using. I would say the biggest impact that we see is when we pick a customer problem. That is widespread, and the number one right now is customer service. Every organization, regardless of industry, wants to do a better job of serving clients. That's why Watson assistant is taking off >> this's. Where? Data The value of real time data. Historical data kind of horizontally. Scaleable data, not silo data. We've talked us in the past. How important is to date a quality piece of this? Because you have real time and you have a historical date and everything in between that you had to bring to bear at low ladened psi applications. Now we're gonna have data embedded in them as a feature. Right. How does this change? The workloads? The makeup of you? Major customer services? One piece, the low hanging fruit. I get that. But this is a key thing. The data architecture more than anything, isn't it? >> It is. Now remember, there's there's two rungs at the bottom of the ladder on data collection. We have to build a collect data in any form in any type. That's why you've seen us do relationships with Mongo. D B. Were they ship? Obviously with Claude Era? We've got her own data warehouse, so we integrate all of that through our sequel engine. That thing gets to your point around. Are you gonna organize the data? How are you going to curate it? We've got data catalogue. Every client will have a data catalogue for many dollar data across. Clouds were now doing automated metadata creation using a I and machine learning So the organization peace. Once you've collected it than the organization, peace become most important. Certainly, if you want to get to self service analytics, you want to make data available to data scientists around the organization. You have to have those governance pieces. >> Talk about the ecosystem. One of the things that's been impressive IBM of the years is your partnerships. You've done good partners. Partnership of relationships now in an ecosystem is a lot of building blocks. There's more complexity requires software to distract him away. We get that. What's opportunities for you to create new relationships? Where are the upper opportunities for someone a developer or accompanied to engage with you guys? Where's the white spaces? Where is someone? Take advantage of your momentum and you're you're a vision. >> I am dying for partners that air doing domain specific industry specific applications to come have them run on IBM cloud private for data, which unleashes all the data they need to be a valuable application. We've already got a few of those data mirrors. One sensing is another one that air running now as industry applications on top of IBM Club private for data. I'd like to have a thousand of these. So all comers there. We announced a partnership with Red Hat back in May. Eventually, that became more than just a partnership. But that was about enabling Cloud Private, for data on red had open shift, So we're partnered at all layers of the stack. But the greatest customer need is give me an industry solution, leveraging the best of my data. That's why I'm really looking for Eyes V. Partners to run on Ivan clubs. >> What's your pitch to those guys? Why, why I should be going. >> There is no other data platform that will connect to all your data sources, whether they're on eight of us as your Google Cloud on premise. So if you believe data is important to your application. There's simply no better place to run than IBM. Claude Private for data >> in terms of functionality, breath o r. Everything >> well, integrating with all your data. Normally they have to have the application in five different places. We integrate with all the data we build the data catalogue. So the data's organized. So the ingestion of the data becomes very easy for the Iast V. And by the way, thirdly, IBM has got a pretty good reach. Globally, one hundred seventy countries, business partners, resellers all over the world, sales people all over the world. We will help you get your product to market. That's a pretty good value >> today. We talk about this in the Cube all the time. When the cloud came, one of the best things about the cloud wasn't allowed. People to put applications go there really quickly. Stand them up. Startups did that. But now, in this domain world of of data with the clouds scale, I think you're right. I think domain X expertise is the top of the stack where you need specially special ism expertise and you don't build the bottom half out. What you're getting at is of Europe. If you know how to create innovation in the business model, you could come in and innovate quickly >> and vertical APS don't scale enough for me. So that's why focus on horizontal things like customer service. But if you go talk to a bank, sometimes customer service is not in office. I want to do something in loan origination or you're in insurance company. I want to use their own underwriting those air, the solutions that will get a lot of value out of running on an integrated data start >> a thousand flowers. Bloom is kind of ecosystem opportunity. Looking forward to checking in on that. Thoughts on on gaps. For that you guys want to make you want to do em in a on or areas that you think you want to double down on. That might need some help, either organic innovation or emanate what areas you looking at. Can you share a little bit of direction on that? >> We have, >> ah, a unique benefit. And IBM because we have IBM research. One of their big announcement this week is what we call Auto Way I, which is basically automating the process of feature engineering algorithm selection, bringing that into Watson Studio and Watson Machine learning. I am spending most of my time figure out howto I continue to bring great technology out of IBM research and put in the hand of clients through our products. You guys solve the debaters stuff yesterday. We're just getting started with that. We've got some pretty exciting organic innovation happen in IBM. >> It's awesome. Great news for startups. Final question for you. For the folks watching who aren't here in San Francisco, what's the big story here? And IBM think here in San Francisco. Big event closing down the streets here in Howard Street. It's huge. What's the big story? What's the most important things happening? >> The most important thing to me and the customer stories >> here >> are unbelievable. I think we've gotten past this point of a eyes, some idea for the future we have. Hundreds of clients were talking about how they did an A I project, and here's the outcome they got. It's really encouraging to see what I encourage. All clients, though, is so build your strategy off of one big guy. Project company should be doing hundreds of Aye, aye projects. So in twenty nineteen do one hundred projects. Half of them will probably fail. That's okay. The one's that work will more than make up for the ones that don't work. So we're really encouraging mass experimentation. And I think the clients that air here are, you know, creating an aspirational thing for things >> just anecdotally you mentioned earlier. Customer service is a low hanging fruit. Other use cases that are great low hanging fruit opportunities for a >> data discovery data curation these air really hard manual task. Today you can start to automate some of that. That has a really big impact. >> Rob Thomas, general manager of the data and a I groupie with an IBM now part of a bigger portfolio. Watson Rob. Great to see you conventionally on all your success. But following you from the beginning. Great momentum on the right way. Thanks. Gradually. More cute coverage here. Live in San Francisco from Mosconi North. I'm John for Dave A lot. They stay with us for more coverage after this short break
SUMMARY :
It's the cube covering Great to see you again. There you go. This year we've written ten books on a data. too much work. in the center of the announcements we have a story up on. build the models, run them where you want. Was the impact of them if any gives you the portability so that it can run anywhere because, in addition Teo, I'd say, So this notion of you can't have a eye without a it's It's obviously a great tagline. That's kind of the ah ha moment people have when they see that. What's the impact this year and IBM? Whether you want to build your own or you want an application designed for the line of business and then You're simplifying the consumption from a client, your customer perspective. Yeah, Watson is the Aye, aye, brand. You seen any patterns, rob in terms of those customers you mentioned, some customers want to do their own. That's How would you manage all of your A II environments? you had to bring to bear at low ladened psi applications. How are you going to curate it? One of the things that's been impressive IBM of the years is your partnerships. But the greatest customer need is give me an industry solution, What's your pitch to those guys? So if you believe data is important to your application. We will help you get your product to market. If you know how to create innovation in the business But if you go talk to a bank, sometimes customer service is not in office. For that you guys want to make you want to do em in a on or areas that you think you want to double You guys solve the debaters stuff yesterday. What's the most important things happening? and here's the outcome they got. just anecdotally you mentioned earlier. Today you can start to automate some of that. Rob Thomas, general manager of the data and a I groupie with an IBM now part of a bigger portfolio.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
IBM | ORGANIZATION | 0.99+ |
John Ford | PERSON | 0.99+ |
Rob Thomas | PERSON | 0.99+ |
Jeffrey David Long | PERSON | 0.99+ |
Howard Street | LOCATION | 0.99+ |
San Francisco | LOCATION | 0.99+ |
San Francisco | LOCATION | 0.99+ |
Europe | LOCATION | 0.99+ |
May | DATE | 0.99+ |
hundreds | QUANTITY | 0.99+ |
Red Hat | ORGANIZATION | 0.99+ |
Claude Era | PERSON | 0.99+ |
Ginny | PERSON | 0.99+ |
Mosconi North | LOCATION | 0.99+ |
ten books | QUANTITY | 0.99+ |
two sides | QUANTITY | 0.99+ |
John | PERSON | 0.99+ |
today | DATE | 0.99+ |
Four days | QUANTITY | 0.99+ |
Dave | PERSON | 0.99+ |
forty percent | QUANTITY | 0.99+ |
one hundred seventy countries | QUANTITY | 0.99+ |
seven years | QUANTITY | 0.99+ |
One piece | QUANTITY | 0.99+ |
Today | DATE | 0.99+ |
Claude Private | PERSON | 0.99+ |
yesterday | DATE | 0.99+ |
first task | QUANTITY | 0.99+ |
Half | QUANTITY | 0.99+ |
eight | QUANTITY | 0.98+ |
two rungs | QUANTITY | 0.98+ |
CNBC | ORGANIZATION | 0.98+ |
this week | DATE | 0.97+ |
This year | DATE | 0.97+ |
twenty nineteen do one hundred projects | QUANTITY | 0.97+ |
Mongo | ORGANIZATION | 0.97+ |
Mosconi St | LOCATION | 0.97+ |
Watson | TITLE | 0.96+ |
Teo | PERSON | 0.96+ |
Watson | PERSON | 0.96+ |
One | QUANTITY | 0.96+ |
Hundreds of clients | QUANTITY | 0.95+ |
Watson Open Scale | TITLE | 0.95+ |
five different places | QUANTITY | 0.94+ |
one big guy | QUANTITY | 0.93+ |
Watson Studio | TITLE | 0.93+ |
one | QUANTITY | 0.93+ |
this year | DATE | 0.92+ |
Cooper Netease | ORGANIZATION | 0.91+ |
twenty | QUANTITY | 0.91+ |
Modi | PERSON | 0.9+ |
Dayton | ORGANIZATION | 0.9+ |
red | ORGANIZATION | 0.89+ |
Watson | ORGANIZATION | 0.87+ |
IBM Data | ORGANIZATION | 0.87+ |
Eyes V. | ORGANIZATION | 0.87+ |
IBM Club | ORGANIZATION | 0.86+ |
end | DATE | 0.86+ |
last year | DATE | 0.84+ |
2019 | DATE | 0.82+ |
thirdly | QUANTITY | 0.77+ |
a thousand flowers | QUANTITY | 0.77+ |
Rollback of Scotland | ORGANIZATION | 0.77+ |
Google Cloud | TITLE | 0.76+ |
Aye | ORGANIZATION | 0.75+ |
thousand | QUANTITY | 0.74+ |