Kazuhiro Gomi, NTT | Upgrade 2020 The NTT Research Summit
>> Narrator: From around the globe, it's theCUBE, covering the Upgrade 2020, the NTT Research Summit presented by NTT Research. >> Hey, welcome back everybody. Jeff Frick here with theCUBE. We're in Palo Alto studio for our ongoing coverage of the Upgrade 2020, it's the NTT Research conference. It's our first year covering the event, it's actually the first year for the event inaugural, a year for the events, we're really, really excited to get into this. It's basic research that drives a whole lot of innovation, and we're really excited to have our next guest. He is Kazuhiro Gomi, he is the President and CEO of NTT Research. Kazu, great to see you. >> Hi, good to see you. >> Yeah, so let's jump into it. So this event, like many events was originally scheduled I think for March at Berkeley, clearly COVID came along and you guys had to make some changes. I wonder if you can just share a little bit about your thinking in terms of having this event, getting this great information out, but having to do it in a digital way and kind of rethinking the conference strategy. >> Sure, yeah. So NTT Research, we started our operations about a year ago, July, 2019. and I always wanted to show the world that to give a update of what we have done in the areas of basic and fundamental research. So we plan to do that in March, as you mentioned, however, that the rest of it to some extent history, we needed to cancel the event and then decided to do this time of the year through virtual. Something we learned, however, not everything is bad, by doing this virtual we can certainly reach out to so many peoples around the globe at the same time. So we're taking, I think, trying to get the best out of it. >> Right, right, so you've got a terrific lineup. So let's jump into a little bit. So first thing just about NTT Research, we're all familiar, if you've been around for a little while about Bell Labs, we're fortunate to have Xerox PARC up the street here in Palo Alto, these are kind of famous institutions doing basic research. People probably aren't as familiar at least in the states around NTT basic research. But when you think about real bottom line basic research and how it contributes ultimately, it gets into products, and solutions, and health care, and all kinds of places. How should people think about basic research and its role in ultimately coming to market in products, and services, and all different things. But you're getting way down into the weeds into the really, really basic hardcore technology. >> Sure, yeah, so let me just from my perspective, define the basic research versus some other research and development. For us that the basic research means that we don't necessarily have any like a product roadmap or commercialization roadmap, we just want to look at the fundamental core technology of all things. And from the timescale perspective obviously, not that we're not looking at something new, thing, next year, next six months, that kind of thing. We are looking at five years or sometimes longer than that, potentially 10 years down the road. But you mentioned about the Bell Lab and Xerox PARC. Yeah, well, they used to be such organizations in the United States, however, well, arguably those days have kind of gone, but so that's what's going on in the United States. In Japan, NTT has have done quite a bit of basic research over the years. And so we wanted to, I think because that a lot of the cases that we can talk about the end of the Moore's laws and then the, we are kind of scary time for that. The energy consumptions on ITs We need to make some huge, big, fundamental change has to happen to sustain our long-term development of the ideas and basically for the sake of human beings. >> Right, right. >> So NTT sees that and also we've been doing quite a bit of basic research in Japan. So we recognize this is a time that the let's expand this activities and then by doing, as a part of doing so is open up the research lab in Silicon Valley, where certainly we can really work better, work easier to with that the global talents in this field. So that's how we started this endeavor, like I said, last year. And so far, it's a tremendous progress that we have made, so that's where we are. >> That's great, so just a little bit more specific. So you guys are broken down into three labs as I understand, you've got the Physics, the PHI, which is Physics and Informatics, the CIS lab Cryptography and Information Security, and the MEI lab Medical and Health Informatics, and the conference has really laid out along those same tracks, really day one is a whole lot of stuff, or excuse me, they do to run the Physics and Informatics day. The next day is really Cryptography and Information Security, and then the Medical and Health Informatics. So those are super interesting but very diverse kind of buckets of fundamental research. And you guys are attacking all three of those pillars. >> Yup, so day one, general session, is that we cover the whole, all the topics. And but just that whole general topics. I think some people, those who want to understand what NTT research is all about, joining day one will be a great day to be, to understand more holistic what we are doing. However, given the type of research topic that we are tackling, we need the deep dive conversations, very specific to each topic by the specialist and the experts in each field. Therefore we have a day two, three, and four for a specific topics that we're going to talk about. So that's a configuration of this conference. >> Right, right, and I love. I just have to read a few of the session breakout titles 'cause I think they're just amazing and I always love learning new vocabulary words. Coherent nonlinear dynamics and combinatorial optimization language multipliers, indistinguishability obfuscation from well-founded assumptions, fully deniable communications and computation. I mean, a brief history of the quasi-adaptive NIZKs, which I don't even know what that stands for. (Gomi laughing) Really some interesting topics. But the other thing that jumps out when you go through the sessions is the representation of universities and really the topflight university. So you've got people coming from MIT, CalTech, Stanford, Notre Dame, Michigan, the list goes on and on. Talk to us about the role of academic institutions and how NTT works in conjunction with academic institutions, and how at this basic research level kind of the commercial academic interests align and come together, and work together to really move this basic research down the road. >> Sure, so the working with academic, especially at the top-notch universities are crucial for us. Obviously, that's where the experts in each field of the basic research doing their super activities and we definitely need to get connected, and then we need to accelerate our activities and together with the entities researchers. So that has been kind of one of the number one priority for us to jumpstart and get some going. So as you mentioned, Jeff, that we have a lineup of professors and researchers from each top-notch universities joining to this event and talking at a generous, looking at different sessions. So I'm sure that those who are listening in to those sessions, you will learn well what's going on from the NTT's mind or NTT researchers mind to tackle each problem. But at the same time you will get to hear that top level researchers and professors in each field. So I believe this is going to be a kind of unique, certainly session that to understand what's it's like in a research field of quantum computing, encryptions, and then medical informatics of the world. >> Right. >> So that's, I am sure it's going to be a pretty great lineups. >> Oh, absolutely, a lot of information exchange. And I'm not going to ask you to pick your favorite child 'cause that would be unfair, but what I am going to do is I noticed too that you also write for the Forbes Technology Council members. So you're publishing on Forbes, and one of the articles that you publish relatively recently was about biological digital twins. And this is a topic that I'm really interested in. We used to do a lot of stuff with GE and there was always a lot of conversation about digital twins, for turbines, and motors, and kind of all this big, heavy industrial equipment so that you could get ahead of the curve in terms of anticipating maintenance and basically kind of run simulations of its lifetime. Need concept, now, and that's applied to people in biology, whether that's your heart or maybe it's a bigger system, your cardiovascular system, or the person as a whole. I mean, that just opens up so much interesting opportunities in terms of modeling people and being able to run simulations. If they do things different, I would presume, eat different, walk a little bit more, exercise a little bit more. And you wrote about it, I wonder if you could share kind of your excitement about the potential for digital twins in the medical space. >> Sure, so I think that the benefit is very clear for a lot of people, I would hope that the ones, basically, the computer system can simulate or emulate your own body, not just a generic human body, it's the body for Kazu Gomi at the age of whatever. (Jeff laughing) And so if you get that precise simulation of your body you can do a lot of things. Oh, you, meaning I think a medical professional can do a lot of thing. You can predict what's going to happen to my body in the next year, six months, whatever. Or if I'm feeling sick or whatever the reasons and then the doctor wants to prescribe a few different medicines, but you can really test it out a different kind of medicines, not to you, but to the twin, medical twin then obviously is safer to do some kind of specific medicines or whatever. So anyway, those are the kind of visions that we have. And I have to admit that there's a lot of things, technically we have to overcome, and it will take a lot of years to get there. But I think it's a pretty good goal to define, so we said we did it and I talked with a couple of different experts and I am definitely more convinced that this is a very nice goal to set. However, well, just talking about the goal, just talking about those kinds of futuristic thing, you may just end up with a science fiction. So we need to be more specific, so we have the very researchers are breaking down into different pieces, how to get there, again, it's going to be a pretty long journey, but we're starting from that, they're try to get the digital twin for the cardiovascular system, so basically the create your own heart. Again, the important part is that this model of my heart is very similar to your heart, Jeff, but it's not identical it is somehow different. >> Right, right. >> So we are looking on it and there are certainly some, we're not the only one thinking something like this, there are definitely like-minded researchers in the world. So we are gathered together with those folks and then come up with the exchanging the ideas and coming up with that, the plans, and ideas, that's where we are. But like you said, this is really a exciting goal and exciting project. >> Right, and I like the fact that you consistently in all the background material that I picked up preparing for this today, this focus on tech for good and tech for helping the human species do better down the road. In another topic, in other blog post, you talked about and specifically what are 15 amazing technologies contributing to the greater good and you highlighted cryptography. So there's a lot of interesting conversations around encryption and depending kind of commercialization of quantum computing and how that can break all the existing kind of encryption. And there's going to be this whole renaissance in cryptography, why did you pick that amongst the entire pallet of technologies you can pick from, what's special about cryptography for helping people in the future? >> Okay, so encryption, I think most of the people, just when you hear the study of the encryption, you may think what the goal of these researchers or researches, you may think that you want to make your encryption more robust and more difficult to break. That you can probably imagine that's the type of research that we are doing. >> Jeff: Right. >> And yes, yes, we are doing that, but that's not the only direction that we are working on. Our researchers are working on different kinds of encryptions and basically encryptions controls that you can just reveal, say part of the data being encrypted, or depending upon that kind of attribute of whoever has the key, the information being revealed are slightly different. Those kinds of encryption, well, it's kind of hard to explain verbally, but functional encryption they call is becoming a reality. And I believe those inherit data itself has that protection mechanism, and also controlling who has access to the information is one of the keys to address the current status. Current status, what I mean by that is, that they're more connected world we are going to have, and more information are created through IOT and all that kind of stuff, more sensors out there, I think. So it is great on the one side that we can do a lot of things, but at the same time there's a tons of concerns from the perspective of privacy, and securities, and stuff, and then how to make those things happen together while addressing the concern and the leverage or the benefit you can create super complex accessing systems. But those things, I hate to say that there are some inherently bringing in some vulnerabilities and break at some point, which we don't want to see. >> Right. >> So I think having those securities and privacy mechanism in that the file itself is I think that one of the key to address those issues, again, get the benefit of that they're connected in this, and then while maintaining the privacy and security for the future. >> Right. >> So and then that's, in the end will be the better for everyone and a better society. So I couldn't pick other (Gomi and Jeff laughing) technology but I felt like this is easier for me to explain to a lot of people. So that's mainly the reasons that I went back launching. >> Well, you keep publishing, so I'm sure you'll work your way through most of the technologies over a period of time, but it's really good to hear there's a lot of talk about security not enough about privacy. There's usually the regs and the compliance laws lag, what's kind of happening in the marketplace. So it's good to hear that's really a piece of the conversation because without the privacy the other stuff is not as attractive. And we're seeing all types of issues that are coming up and the regs are catching up. So privacy is a super important piece. But the other thing that is so neat is to be exposed not being an academic, not being in this basic research every day, but have the opportunity to really hear at this level of detail, the amount of work that's being done by big brain smart people to move these basic technologies along, we deal often in kind of higher level applications versus the stuff that's really going on under the cover. So really a great opportunity to learn more and hear from, and probably understand some, understand not all about some of these great, kind of baseline technologies, really good stuff. >> Yup. >> Yeah, so thank-you for inviting us for the first one. And we'll be excited to sit in on some sessions and I'm going to learn. What's that one phrase that I got to learn? The N-I-K-Z-T. NIZKs. (laughs) >> NIZKs. (laughs) >> Yeah, NIZKs, the brief history of quasi-adaptive NI. >> Oh, all right, yeah, yeah. (Gomi and Jeff laughing) >> All right, Kazuhiro, I give you the final word- >> You will find out, yeah. >> You've been working on this thing for over a year, I'm sure you're excited to finally kind of let it out to the world, I wonder if you have any final thoughts you want to share before we send people back off to their sessions. >> Well, let's see, I'm sure if you're watching this video, you are almost there for that actual summit. It's about to start and so hope you enjoy the summit and in a physical, well, I mentioned about the benefit of this virtual, we can reach out to many people, but obviously there's also a flip side of the coin as well. With a physical, we can get more spontaneous conversations and more in-depth discussion, certainly we can do it, perhaps not today. It's more difficult to do it, but yeah, I encourage you to, I think I encouraged my researchers NTT side as well to basic communicate with all of you potentially and hopefully then to have more in-depth, meaningful conversations just starting from here. So just feel comfortable, perhaps just feel comfortable to reach out to me and then all the other NTT folks. And then now, also that the researchers from other organizations, I'm sure they're looking for this type of interactions moving forward as well, yeah. >> Terrific, well, thank-you for that open invitation and you heard it everybody, reach out, and touch base, and communicate, and engage. And it's not quite the same as being physical in the halls, but that you can talk to a whole lot more people. So Kazu, again, thanks for inviting us. Congratulations on the event and really glad to be here covering it. >> Yeah, thank-you very much, Jeff, appreciate it. >> All right, thank-you. He's Kazu, I'm Jeff, we are at the Upgrade 2020, the NTT Research Summit. Thanks for watching, we'll see you next time. (upbeat music)
SUMMARY :
the NTT Research Summit of the Upgrade 2020, it's and you guys had to make some changes. and then decided to do this time and health care, and all kinds of places. of the cases that we can talk that the let's expand this and the MEI lab Medical and the experts in each field. and really the topflight university. But at the same time you will get to hear it's going to be a pretty great lineups. and one of the articles that so basically the create your own heart. researchers in the world. Right, and I like the fact and more difficult to break. is one of the keys to and security for the future. So that's mainly the reasons but have the opportunity to really hear and I'm going to learn. NIZKs. Yeah, NIZKs, the brief (Gomi and Jeff laughing) it out to the world, and hopefully then to have more in-depth, and really glad to be here covering it. Yeah, thank-you very the NTT Research Summit.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Jeff | PERSON | 0.99+ |
Kazuhiro Gomi | PERSON | 0.99+ |
CalTech | ORGANIZATION | 0.99+ |
NTT | ORGANIZATION | 0.99+ |
Jeff Frick | PERSON | 0.99+ |
Japan | LOCATION | 0.99+ |
Kazu | PERSON | 0.99+ |
Silicon Valley | LOCATION | 0.99+ |
March | DATE | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
three | QUANTITY | 0.99+ |
five years | QUANTITY | 0.99+ |
Bell Lab | ORGANIZATION | 0.99+ |
Gomi | PERSON | 0.99+ |
Bell Labs | ORGANIZATION | 0.99+ |
Kazu Gomi | PERSON | 0.99+ |
four | QUANTITY | 0.99+ |
Kazuhiro | PERSON | 0.99+ |
United States | LOCATION | 0.99+ |
next year | DATE | 0.99+ |
Moore | PERSON | 0.99+ |
10 years | QUANTITY | 0.99+ |
NTT Research | ORGANIZATION | 0.99+ |
GE | ORGANIZATION | 0.99+ |
Berkeley | LOCATION | 0.99+ |
Forbes Technology Council | ORGANIZATION | 0.99+ |
last year | DATE | 0.99+ |
Xerox PARC | ORGANIZATION | 0.99+ |
Stanford | ORGANIZATION | 0.99+ |
NTT Research Summit | EVENT | 0.99+ |
15 amazing technologies | QUANTITY | 0.99+ |
July, 2019 | DATE | 0.99+ |
MIT | ORGANIZATION | 0.98+ |
each topic | QUANTITY | 0.98+ |
NTT Research | EVENT | 0.98+ |
Upgrade 2020 | EVENT | 0.98+ |
one | QUANTITY | 0.98+ |
first year | QUANTITY | 0.97+ |
each field | QUANTITY | 0.97+ |
today | DATE | 0.97+ |
three labs | QUANTITY | 0.96+ |
each problem | QUANTITY | 0.96+ |
Michigan | LOCATION | 0.96+ |
next six months | DATE | 0.95+ |
Notre Dame | ORGANIZATION | 0.95+ |
first one | QUANTITY | 0.95+ |
a year ago | DATE | 0.94+ |
one side | QUANTITY | 0.91+ |
one phrase | QUANTITY | 0.9+ |
over a year | QUANTITY | 0.9+ |
a year | QUANTITY | 0.9+ |
Physics and Informatics | EVENT | 0.89+ |
twin | QUANTITY | 0.87+ |
first thing | QUANTITY | 0.86+ |
each top- | QUANTITY | 0.86+ |
day one | QUANTITY | 0.84+ |
CIS | ORGANIZATION | 0.83+ |
six | QUANTITY | 0.82+ |
Medical and Health Informatics | ORGANIZATION | 0.8+ |
one of | QUANTITY | 0.72+ |
Forbes | ORGANIZATION | 0.71+ |