Image Title

Search Results for Astro Data:

Bruno Aziza & Josh Klahr, AtScale - Big Data SV 17 - #BigDataSV - #theCUBE1


 

>> Announcer: Live from San Jose, California, it's The Cube. Covering Big Data, Silicon Valley, 2017. (electronic music) >> Okay, welcome back everyone, live at Silicon Valley for the big The Cube coverage, I'm John Furrier, with me Wikibon analyst George Gilbert, Bruno Aziza, who's on the CMO of AtScale, Cube alumni, and Josh Klahr VP at AtScale, welcome to the Cube. >> Welcome back. >> Thank you. >> Thanks, Brian. >> Bruno, great to see you. You look great, you're smiling as always. Business is good? >> Business is great. >> Give us the update on AtScale, what's up since we last saw you in New York? >> Well, thanks for having us, first of all. And, yeah, business is great, we- I think Last time I was here on The Cube we talked about the Hadoop Maturity Survey and at the time we'd just launched the company. And, so now you look about a year out and we've grown about 10x. We have large enterprises across just about any vertical you can think of. You know, financial services, your American Express, healthcare, think about ETNA, SIGNA, GSK, retail, Home Depot, Macy's and so forth. And, we've also done a lot of work with our partner Ecosystem, so Mork's- OEM's AtScale technology which is a great way for us to get you AtScale across the US, but also internationally. And then our customers are getting recognized for the work that they are doing with AtScale. So, last year, for instance, Yellowpages got recognized by Cloudera, on their leadership award. And Macy's got a leadership award as well. So, things are going the right trajectory, and I think we're also benefitting from the fact that the industry is changing, it's maturing on the the big data side, but also there's a right definition of what business intelligence means. This idea that you can have analytics on large-scale data without having to change your visualization tools and make that work with existing stock you have in place. And, I think that's been helping us in growing- >> How did you guys do it? I mean, you know, we've talked many times in there's some secret sauce there, but, at the time when you guys were first starting it was kind of crowded field, right? >> Bruno: Yeah. >> And all these BI tools were out there, you had front end BI tools- >> Bruno: Yep. But everyone was still separate from the whole batch back end. So, what did you guys do to break out? >> So, there's two key differentiators with AtScale. The first one is we are the only platform that does not have a visualization tool. And, so people think about this as, that's a bug, that's actually a feature. Because, most enterprises have already that stuff made with traditional BI tools. And so our ability to talk to MDX and SQL types of BI tools, without any changes is a big differentiator. And then the other piece of our technology, this idea that you can get the speed, the scale and security on large data sets without having to move the data. It's a big differentiation for our enterprise to get value out of the data. They already have in Hadoop as well as non-Hadoop systems, which we cover. >> Josh, you're the VP of products, you have the roadmaps, give us a peek into what's happening with the current product. And, where's the work areas? Where are you guys going? What's the to-do list, what's the check box, and what's the innovation coming around the corner? >> Yeah, I think, to follow up on what Bruno said about how we hit the sweet spot. I think- we made a strategic choice, which is we don't want to be in the business of trying to be Tableu or Excel or be a better front end. And there's so much diversity on the back end if you look at the ecosystem right now, whether it's Spark Sequel, or Hive, or Presto, or even new cloud based systems, the sweet spot is really how do you fit into those ecosystems and support the right level of BI on top of those applications. So, what we're looking at, from a road map perspective is how do we expand and support the back end data platforms that customers are asking about? I think we saw a big white space in BI on Hadoop in particular. And that's- I'd say, we've nailed it over the past year and a half. But, we see customers now that are asking us about Google Big Query. They're asking us about Athena. I think these server-less data platforms are really, really compelling. They're going to take a while to get adoption. So, that's a big investment area for us. And then, in terms of supporting BI front ends, we're kind of doubling down on making sure our Tableau integration is great, Power BI is I think getting really big traction. >> Well, two great products, you've got Microsoft and Tableau, leaders in that area. >> The self-service BI revolution has, I would say, has won. And the business user wants their tool of choice. Where we come in is the folks responsible for data platforms on the back end, they want some level of control and consistency and so they're trying to figure out, where do you draw the line? Where do you provide standards? Where do you provide governance, and where do you let the business lose? >> All right, so, Bruno and Josh, I want you to answer the questions, be a good quiz. So, define next generation BI platforms from a functional standpoint and then under the hood. >> Yeah, there's a few things you can look at. I think if you were at the Gartner BI conference last week you saw that there was 24 vendors in the magic quadrant and I think in general people are now realizing that this is a space that is extremely crowded and it's also sitting on technology that was built 20 years ago. Now, when you talk to enterprises like the ones we work with, like, as I named earlier, you realize that they all have multiple BI tools. So, the visualization war, if you will, kind of has been set up and almost won by Microsoft and Tableau at this point. And, the average enterprise is 15 different BI tools. So, clearly, if you're trying to innovate on the visualization side, I would say you're going to have a very hard time. So, you're dealing with that level of complexity. And then, at the back end standpoint, you're now having to deal with database from the past - that's the Teradata of this world - data sources from today - Hadoop - and data sources from the future, like Google Big Query. And, so, I think the CIO answer of what is the next gen BI platform I want is something that is enabling me to simplify this very complex world. I have lots of BI tools, lots of data, how can I standardize in the middle in order to provide security, provide scale, provide speed to my business users and, you know, that's really radically going to change the space, I think. If you're trying to sell a full stack that's integrated from the bottom all the way to visualization, I don't think that's what enterprises want anymore >> Josh, under the hood, what's the next generation- you know, key leverage for the tech, and, just the enabler. >> Yeah, so, for me the end state for the next generation GI platform is a user can log in, they can point to their data, wherever that data is, it's on Prime, it's in the cloud, it's in a relational database, it's a flat file, they can design their business model. We spend a lot of time making sure we can support the creation of business models, what are the key metrics, what are the hierarchies, what are the measures, it may sound like I'm talking about OLAP. You know, that's what our history is steeped in. >> Well, faster data is coming, that's- streaming and data is coming together. >> So, I should be able to just point at those data sets and turn around and be able to analyze it immediately. On the back end that means we need to have pretty robust modeling capabilities. So that you can define those complex metrics, so you can functionally do what are traditional business analytics, period over period comparisons, rolling averages, navigate up and down business hierarchies. The optimizations should be built in. It shouldn't be the responsibility of the designer to figure out, do I need to create indeces, do I need to create aggregates, do I need to create summarization? That should all be handled for you automatically. Shouldn't think about data movement. And so that's really what we've built in from an AtScale perspective on the back end. Point to data, we're smart about creating optimal data structure so you get fast performance. And then, you should be able to connect whatever BI tool you want. You should be able to connect Excel, we can talk the MDX Query language. We can talk Sequel, we can talk Dax, whatever language you want to talk. >> So, take the syntax out of the hands of the user. >> Yeah. >> Yeah. >> And getting in the weeds on that stuff. Make it easier for them- >> Exactly. >> And the key word I think, for the future of BI is open, right? We've been buying tools over the last- >> What do you mean by that, explain. >> Open means that you can choose whatever BI tool you want, and you can choose whatever data you want. And, as a business user there's no real compromise. But, because you're getting an open platform it doesn't mean that you have to trade off complexity. I think some of the stuff that Josh was talking about, period analysis, the type of multidimensional analysis that you need, calendar analysis, historical data, that's still going to be needed, but you're going to need to provide this in a world where the business, user, and IT organization expects that the tools they buy are going to be open to the rest of the ecosystem, and that's new, I think. >> George, you want to get a question in, edgewise? Come on. (group laughs) >> You know, I've been sort of a single-issue candidate, I guess, this week on machine learning and how it's sort of touching all the different sectors. And, I'm wondering, are you- how do you see yourselves as part of a broader pipeline of different users adding different types of value to data? >> I think maybe on the machine learning topic there is a few different ways to look at it. The first is we do use machine learning in our own product. I talked about this concept of auto-optimization. One of the things that AtScale does is it looks at end-user query patterns. And we look at those query patterns and try to figure out how can we be smart about anticipating the next thing they're going to ask so we can pre-index, or pre-materialize that data? So, there's machine learning in the context of making AtScale a better product. >> Reusing things that are already done, that's been the whole machine-learning- >> Yes. >> Demos, we saw Google Next with the video editing and the video recognition stuff, that's been- >> Exactly. >> Huge part of it. >> You've got users giving you signals, take that information and be smart with it. I think, in terms of the customer work flow - Comcast, for example, a customer of ours - we are in a data discovery phase, there's a data science group that looks at all of their set top box data, and they're trying to discover programming patterns. Who uses the Yankees' network for example? And where they use AtScale is what I would call a descriptive element, where they're trying to figure out what are the key measures and trends, and what are the attributes that contribute to that. And then they'll go in and they'll use machine learning tools on top of that same data set to come up with predictive algorithms. >> So, just to be clear there, they're hypotehsizing about, like, say, either the pattern of users that might be- have an affinity for a certain channel or channels, or they're looking for pathways. >> Yes. And I'd say our role in that right now is a descriptive role. We're supporting the descriptive element of that analytics life cycle. I think over time our customers are going to push us to build in more of our own capabilities, when it comes to, okay, I discovered something descriptive, can you come up with a model that helps me predict it the next time around? Honestly, right now people want BI. People want very traditional BI on the next generation data platform. >> Just, continuing on that theme, leaving machine learning aside, I guess, as I understand it, when we talked about the old school vendors, Care Data, when they wanted to support data scientists they grafted on some machine learning, like a parallel version of our- in the core Teradata engine. They also bought Astro Data, which was, you know, for a different audience. So, I guess, my question is, will we see from you, ultimately, a separate product line to support a new class of users? Or, are you thinking about new functionality that gets integrated into the core product. I think it's more of the latter. So, the way that we view it- and this is really looking at, like I said, what people are asking for today is, kind of, the basic, traditional BI. What we're building is essentially a business model. So, when someone uses AtScale, they're designing and they're telling us, they're asserting, these are the things I'm interested in measuring, and these are the attributes that I think might contribute to it. And, so that puts us in a pretty good position to start using, whether it's Spark on the back end, or built in machine learning algorithms on the Hadoop cluster, let's start using our knowledge of that business model to help make predictions on behalf of the customer. So, just a follow-up, and this really leaves out the machine learning part, which is, it sounds like, we went- in terms of big data we we first to archive it- supported more data retension than could do affordably with the data warehouse. Then we did the ETL offload, now we're doing more and more of the visualization, the ad-hoc stuff. >> That's exactly right. So, what- in a couple years time, what remains in the classic data warehouse, and what's in the Hadoop category? >> Well, so there is, I think what you're describing is the pure evolution, of, you know, any technology where you start with the infrastructure, you know, we've been in this for over ten years, now, you've got cloud. They are going APO and then going into the data science workbench. >> That's not official yet. >> I think we read about this, or at least they filed. But I think the direction is showing- now people are relying on the platform, the Hadoop platform, in order to build applications on top of it. And, so, I think, just like Josh is saying, the mainstream application on top of the database - and I think this is true for non-Hadoop systems as well - is always going to be analytics. Of course, data science is something that provides a lot of value, but it typically provides a lot of value to a few set of people that will then scale it out to the rest of their organization. I think if you now project out to what does this mean for the CIO and their environment, I don't think any of these platforms, Teradata or Hadoop, or Google, or Amazon or any of those, I don't think do 100% replace. And, I think that's where it becomes interesting, because you're now having to deal with a hetergeneous environment, where the business user is up, they're using Excel, they're using they're standard net application, they might be using the result of machine learning models, but they're also having to deal with the heterogeneous environment at the data level. Hadoop on Prime, Hadoop in the cloud, non-Hadoop in the cloud and non-Hadoop on Prime. And, of course that's a market that I think is very interesting for us as a simplification platform for that world. >> I think you guys are really thinking about it in a new way, and I think that's kind of a great, modern approach, let the freedom- and by the way, quick question on the Microsoft tool and Tableau, what percentage share do you think they are of the market? 50? Because you mentioned those are the two top ones. >> Are they? >> Yeah, I mentioned them, because if you look at the magic quadrant, clearly Microsoft, Power BI and Tableau have really shot up all the way to the right. >> Because it's easy to use, and it's easy to work with data. >> I think so, I think- look, from a functionality standpoint, you see Tableau's done a very good job on the visualization side. I think, from a business standpoint, and a business model execution, and I can talk from my days at Microsoft, it's a very great distribution model to get thousands and thousands of users to use power BI. Now, the guys that we didn't talk about on the last magic quadrant. People who are like Google Data Studio, or Amazon Quicksite, and I think that will change the ecosystem as well. Which, again, is great news for AtScale. >> More muscle coming in. >> That's right. >> For you guys, just more rising tide floats all boats. >> That's right. >> So, you guys are powering it. >> That's right. >> Modern BI would be safe to say? >> That's the idea. The idea is that the visualization is basically commoditized at this point. And what business users want and what enterprise leaders want is the ability to provide freedom and openness to their business users and never have to compromise security, speed and also the complexity of those models, which is what we- we're in the business of. >> Get people working, get people productive faster. >> In whatever tool they want. >> All right, Bruno. Thanks so much. Thanks for coming on. AtScale. Modern BI here in The Cube. Breaking it down. This is The Cube covering bid data SV strata Hadoop. Back with more coverage after this short break. (electronic music)

Published Date : Mar 15 2017

SUMMARY :

it's The Cube. live at Silicon Valley for the big The Cube coverage, Bruno, great to see you. Hadoop Maturity Survey and at the time So, what did you guys do to break out? this idea that you can get the speed, What's the to-do list, what's the check box, the sweet spot is really how do you Microsoft and Tableau, leaders in that area. and where do you let the business lose? I want you to answer the questions, So, the visualization war, if you will, and, just the enabler. for the next generation GI platform is and data is coming together. of the designer to figure out, So, take the syntax out of the hands And getting in the weeds on that stuff. the type of multidimensional analysis that you need, George, you want to get a question in, edgewise? all the different sectors. the next thing they're going to ask You've got users giving you signals, either the pattern of users that might be- on the next generation data platform. So, the way that we view it- and what's in the Hadoop category? is the pure evolution, of, you know, the Hadoop platform, in order to build applications I think you guys are really thinking about it because if you look at the magic quadrant, and it's easy to work with data. Now, the guys that we didn't talk about For you guys, just more The idea is that the visualization This is The Cube covering bid data

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
George GilbertPERSON

0.99+

BrunoPERSON

0.99+

Bruno AzizaPERSON

0.99+

GeorgePERSON

0.99+

ComcastORGANIZATION

0.99+

ETNAORGANIZATION

0.99+

BrianPERSON

0.99+

John FurrierPERSON

0.99+

New YorkLOCATION

0.99+

Josh KlahrPERSON

0.99+

SIGNAORGANIZATION

0.99+

GSKORGANIZATION

0.99+

JoshPERSON

0.99+

Home DepotORGANIZATION

0.99+

24 vendorsQUANTITY

0.99+

MicrosoftORGANIZATION

0.99+

Yankees'ORGANIZATION

0.99+

thousandsQUANTITY

0.99+

USLOCATION

0.99+

ExcelTITLE

0.99+

last yearDATE

0.99+

AmazonORGANIZATION

0.99+

100%QUANTITY

0.99+

San Jose, CaliforniaLOCATION

0.99+

last weekDATE

0.99+

Silicon ValleyLOCATION

0.99+

AtScaleORGANIZATION

0.99+

American ExpressORGANIZATION

0.99+

first oneQUANTITY

0.99+

firstQUANTITY

0.99+

20 years agoDATE

0.99+

50QUANTITY

0.98+

2017DATE

0.98+

TableauTITLE

0.98+

Macy'sORGANIZATION

0.98+

OneQUANTITY

0.98+

MorkORGANIZATION

0.98+

power BITITLE

0.98+

EcosystemORGANIZATION

0.98+

SequelPERSON

0.97+

GoogleORGANIZATION

0.97+

this weekDATE

0.97+

Power BITITLE

0.97+

ClouderaORGANIZATION

0.96+

15 different BI toolsQUANTITY

0.95+

past year and a halfDATE

0.95+

over ten yearsQUANTITY

0.95+

todayDATE

0.95+

TableuTITLE

0.94+

TableauORGANIZATION

0.94+

SQLTITLE

0.93+

Astro DataORGANIZATION

0.93+

CubeORGANIZATION

0.92+

WikibonORGANIZATION

0.92+

two key differentiatorsQUANTITY

0.92+

AtScaleTITLE

0.91+

Care DataORGANIZATION

0.9+

about 10xQUANTITY

0.9+

Spark SequelTITLE

0.89+

two top onesQUANTITY

0.89+

HadoopTITLE

0.88+

AthenaORGANIZATION

0.87+

two great productsQUANTITY

0.87+

Big QueryTITLE

0.86+

The CubeORGANIZATION

0.85+

Big DataORGANIZATION

0.85+