Steve Wooledge, Arcadia Data & Satya Ramachandran, Neustar | DataWorks Summit 2018
(upbeat electronic music) >> Live from San Jose, in the heart of Silicon Valley, it's theCUBE. Covering Dataworks Summit 2018, brought to you by Hortonworks. (electronic whooshing) >> Welcome back to theCUBE's live coverage of Dataworks, here in San Jose, California. I'm your host, Rebecca Knight, along with my co-host, James Kobielus. We have two guests in this segment, we have Steve Wooledge, he is the VP of Product Marketing at Arcadia Data, and Satya Ramachandran, who is the VP of Engineering at Neustar. Thanks so much for coming on theCUBE. >> Our pleasure and thank you. >> So let's start out by setting the scene for our viewers. Tell us a little bit about what Arcadia Data does. >> Arcadia Data is focused on getting business value from these modern scale-out architectures, like Hadoop, and the Cloud. We started in 2012 to solve the problem of how do we get value into the hands of the business analysts that understand a little bit more about the business, in addition to empowering the data scientists to deploy their models and value to a much broader audience. So I think that's been, in some ways, the last mile of value that people need to get out of Hadoop and data lakes, is to get it into the hands of the business. So that's what we're focused on. >> And start seeing the value, as you said. >> Yeah, seeing is believing, a picture is a thousand words, all those good things. And what's really emerging, I think, is companies are realizing that traditional BI technology won't solve the scale and user concurrency issues, because architecturally, big data's different, right? We're on the scale-out, MPP architectures now, like Hadoop, the data complexity and variety has changed, but the BI tools are still the same, and you pull the data out of the system to put it into some little micro cube to do some analysis. Companies want to go after all the data, and view the analysis across a much broader set, and that's really what we enable. >> I want to hear about the relationship between your two companies, but Satya, tell us a little about Neustar, what you do. >> Neustar is an information services company, we are built around identity. We are the premiere identity provider, the most authoritative identity provider for the US. And we built a whole bunch of services around that identity platform. I am part of the marketing solutions group, and I head the analytics engineering for marketing solutions. The product that I work on helps marketers do their annual planning, as well as their campaign or tactical planning, so that they can fine tune their campaigns on an ongoing basis. >> So how do you use Arcadia Data's primary product? >> So we are a predictive analytics platform, the reporting solution, we use Arcadia for the reporting part of it. So we have multi terabytes of advertising data in our values, and so we use Arcadia to provide fast taxes to our customers, and also very granular and explorative analysis of this data. High (mumbles) and explorative analysis of this data. >> So you say you help your customers with their marketing campaigns, so are you doing predictive analytics? And are you during churn analysis and so forth? And how does Arcadia fit into all of that? >> So we get data and then they build an activation model, which tells how the marketing spent corresponds to the revenue. We not only do historical analysis, we also do predictive, in the sense that the marketers frequently done what-if analysis, saying that, what if I moved my budget from page search to TV? And how does it affect the revenue? So all of this modeling is built by Neustar, the modeling platform is built by the Neustar, but the last mile of taking these reports and providing this explorative analysis of the results, that is provided by the reporting solution, which is Arcadia. >> Well, I mean, the thing about data analytics, is that it really is going to revolutionize marketing. That famous marketing adage of, I know my advertising works, I just don't know which half, and now we're really going to be able to figure out which half. Can you talk a little bit about return on investment and what your clients see? >> Sure, we've got some major Fortune 500 companies that have said publicly that they've realized over a billion dollars of incremental value. And that could be across both marketing analytics, and how we better treat our messaging, our brand, to reach our intended audience. There's things like supply chain and being able to more realtime analyze what-if analysis for different routes, it's things like cyber security and stopping fraud and waste and things like that at a much grander scale than what was really possible in the past. >> So we're here at Dataworks and it's the Hortonworks show. Give us a sense of the degree of your engagement or partnership with Hortonworks and participation in their partner ecosystem. >> Yeah, absolutely. Hortonworks is one of our key partners, and what we did that's different architecturally, is we built our BI server directly into the data platforms. So what I mean by that is, we take the concept of a BI server, we install it and run it on the data nodes of Hortonworks Data Platform. We inherit the security directly out of systems like Apache Ranger, so that all that administration and scale is done at Hadoop economics, if you will, and it leverages the things that are already in place. So that has huge advantages both in terms of scale, but also simplicity, and then you get the performance, the concurrency that companies need to deploy out to like, 5,000 users directly on that Hadoop cluster. So, Hortonworks is a fantastic partner for us and a large number of our customers run on Hortonworks, as well as other platforms, such as Amazon Web Services, where Satya's got his system deployed. >> At the show they announced Hortonworks Data Platform 3.0. There's containerization there, there's updates to Hive to enable it to be more of a realtime analytics, and also a data warehousing engine. In Arcadia Data, do you follow their product enhancements, in terms of your own product roadmap with any specific, fixed cycle? Are you going to be leveraging the new features in HDP 3.0 going forward to add value to your customers' ability to do interactive analysis of this data in close to realtime? >> Sure, yeah, no, because we're a native-- >> 'Cause marketing campaigns are often in realtime increasingly, especially when you're using, you know, you got a completely digital business. >> Yeah, absolutely. So we benefit from the innovations happening within the Hortonworks Data Platform. So, because we're a native BI tool that runs directly within that system, you know, with changes in Hive, or different things within HDFS, in terms of performance or compression and things like that, our customers generally benefit from that directly, so yeah. >> Satya, going forward, what are some of the problems that you want to solve for your clients? What is their biggest pain points and where do you see Neustar? >> So, data is the new island, right? So, marketers, also for them now, data is the biggest, is what they're going after. They want faster analysis, they want to be able to get to insights as fast as they can, and they want to obviously get, work on as large amount of data as possible. The variety of sources is becoming higher and higher and higher, in terms of marketing. There used to be a few channels in '70s and '80s, and '90s kind of increased, now you have like, hundreds of channels, if not thousands of channels. And they want visibility across all of that. It's the ability to work across this variety of data, increasing volume at a very high speed. Those are high level challenges that we have at Neustar. >> Great. >> So the difference, marketing attribution analysis you say is one of the core applications of your solution portfolio. How is that more challenging now than it had been in the past? We have far more marketing channels, digital and so forth, then how does the state-of-the-art of marketing attribution analysis, how is it changing to address this multiplicity of channels and media for advertising and for influencing the customer on social media and so forth? And then, you know, can you give us a sense for then, what are the necessary analytical tools needed for that? We often hear about a social graph analysis or semantic analysis, or for behavioral analytics and so forth, all of this makes it very challenging. How can you determine exactly what influences a customer now in this day and age, where, you think, you know, Twitter is an influencer over the conversation. How can you nail that down to specific, you know, KPIs or specific things to track? >> So I think, from our, like you pointed out, the variety is increasing, right? And I think the marketers now have a lot more options than what they have, and that that's a blessing, and it's also a curse. Because then I don't know where I'm going to move my marketing spending to. So, attribution right now, is still sitting at the headquarters, it's kind of sitting at a very high level and it is answering questions. Like we said, with the Fortune 100 companies, it's still answering questions to the CMOs, right? Where attribution will take us, next step is to then lower down, where it's able to answer the regional headquarters on what needs to happen, and more importantly, on every store, I'm able to then answer and tailor my attribution model to a particular store. Let's take Ford for an example, right? Now, instead of the CMO suite, but, if I'm able to go to every dealer, and I'm able to personal my attribution to that particular dealer, then it becomes a lot more useful. The challenge there is it all needs to be connected. Whatever model we are working for the dealer, needs to be connected up to the headquarters. >> Yes, and that personalization, it very much leverages the kind of things that Steve was talking about at Arcadia. Being able to analyze all the data to find those micro, micro, micro segments that can be influenced to varying degrees, so yeah. I like where you're going with this, 'cause it very much relates to the power of distributing federated big data fabrics like Hortonworks' offers. >> And so it's streaming analytics is coming to forward, and it's been talked about for the past longest period of time, but we have real use cases for streaming analytics right now. Similarly, the large volumes of the data volumes is, indeed, becoming a lot more. So both of them are doing a lot more right now. >> Yes. >> Great. >> Well, Satya and Steve, thank you so much for coming on theCUBE, this was really, really fun talking to you. >> Excellent. >> Thanks, it was great to meet you. Thanks for having us. >> I love marketing talk. >> (laughs) It's fun. I'm Rebecca Knight, for James Kobielus, stay tuned to theCUBE, we will have more coming up from our live coverage of Dataworks, just after this. (upbeat electronic music)
SUMMARY :
brought to you by Hortonworks. the VP of Product Marketing the scene for our viewers. the data scientists to deploy their models the value, as you said. and you pull the data out of the system Neustar, what you do. and I head the analytics engineering the reporting solution, we use Arcadia analysis of the results, and what your clients see? and being able to more realtime and it's the Hortonworks show. and it leverages the things of this data in close to realtime? you got a completely digital business. So we benefit from the It's the ability to work to specific, you know, KPIs and I'm able to personal my attribution the data to find those micro, analytics is coming to forward, talking to you. Thanks, it was great to meet you. stay tuned to theCUBE, we
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
James Kobielus | PERSON | 0.99+ |
Steve Wooledge | PERSON | 0.99+ |
Rebecca Knight | PERSON | 0.99+ |
Satya Ramachandran | PERSON | 0.99+ |
Steve | PERSON | 0.99+ |
Hortonworks | ORGANIZATION | 0.99+ |
Neustar | ORGANIZATION | 0.99+ |
Arcadia Data | ORGANIZATION | 0.99+ |
Ford | ORGANIZATION | 0.99+ |
Satya | PERSON | 0.99+ |
2012 | DATE | 0.99+ |
San Jose | LOCATION | 0.99+ |
two companies | QUANTITY | 0.99+ |
Silicon Valley | LOCATION | 0.99+ |
two guests | QUANTITY | 0.99+ |
Arcadia | ORGANIZATION | 0.99+ |
San Jose, California | LOCATION | 0.99+ |
Amazon Web Services | ORGANIZATION | 0.99+ |
US | LOCATION | 0.99+ |
both | QUANTITY | 0.99+ |
Hortonworks' | ORGANIZATION | 0.99+ |
5,000 users | QUANTITY | 0.99+ |
Dataworks | ORGANIZATION | 0.98+ |
theCUBE | ORGANIZATION | 0.98+ |
one | QUANTITY | 0.97+ |
ORGANIZATION | 0.96+ | |
hundreds of channels | QUANTITY | 0.96+ |
Dataworks Summit 2018 | EVENT | 0.96+ |
DataWorks Summit 2018 | EVENT | 0.93+ |
thousands of channels | QUANTITY | 0.93+ |
over a billion dollars | QUANTITY | 0.93+ |
Data Platform 3.0 | TITLE | 0.9+ |
'70s | DATE | 0.86+ |
Arcadia | TITLE | 0.84+ |
Hadoop | TITLE | 0.84+ |
HDP 3.0 | TITLE | 0.83+ |
'90s | DATE | 0.82+ |
Apache Ranger | ORGANIZATION | 0.82+ |
thousand words | QUANTITY | 0.76+ |
HDFS | TITLE | 0.76+ |
multi terabytes | QUANTITY | 0.75+ |
Hive | TITLE | 0.69+ |
Neustar | TITLE | 0.67+ |
Fortune | ORGANIZATION | 0.62+ |
80s | DATE | 0.55+ |
500 | QUANTITY | 0.45+ |
100 | QUANTITY | 0.4+ |
theCUBE | TITLE | 0.39+ |