Image Title

Search Results for Spark ML Lib:

Rob Lantz, Novetta - Spark Summit 2017 - #SparkSummit - #theCUBE


 

>> Announcer: Live from San Francisco it's the CUBE covering Spark Summit 2017 brought to you by Data Bricks. >> Welcome back to the CUBE, we're continuing to take about two people who are not just talking about things but doing things. We're happy to have, from Novetta, the Director of Predictive Analytics, Mr. Rob Lantz. Rob, welcome to the show. >> Thank you. >> And off to my right, George, how are you? >> Good. >> We've introduced you before. >> Yes. >> Well let's talk to the guest. Let's get right to it. I want to talk to you a little bit about what does Novetta do and then maybe what apps you're building using Spark. >> Sure, so Novetta is an advanced analytics company, we're medium sized and we develop custom hardware and software solutions for our customers who are looking to get insights out of their big data. Our primary offering is a hard entity resolution engine. We scale up to billions of records and we've done that for about 15 years. >> So you're in the business end of analytics, right? >> Yeah, I think so. >> Alright, so talk to us a little bit more about entity resolution, and that's all Spark right? This is your main priority? >> Yes, yes, indeed. Entity resolution is the science of taking multiple disparate data sets, traditional big data, and taking records from those and determining which of those are actually the same individual or company or address or location and which of those should be kept separate. We can aggregate those things together and build profiles and that enables a more robust picture of what's going on for an organization. >> Okay, and George? >> So what did you do... What was the solution looking like before Spark and how did it change once you adopted Spark? >> Sure, so with Spark, it enabled us to get a lot faster. Obviously those computations scaled a lot better. Before, we were having to write a lot of custom code to get those computations out across a grid. When we moved to Hadoop and then Spark, that made us, let's say able to scale those things and get it done overnight or in hours and not weeks. >> So when you say you had to do a lot of custom code to distribute across the cluster, does that include when you were working with MapReduce, or was this even before the Hadoop era? >> Oh it was before the Hadoop era and that predates my time so I won't be able to speak expertly about it, but to my understanding, it was a challenge for sure. >> Okay so this sounds like a service that your customers would then themselves build on. Maybe an ETL customer would figure out master data from a repository that is not as carefully curated as the data warehouse or similar applications. So who is your end customer and how do they build on your solution? >> Sure, so the end customer typically is an enterprise that has large volumes of data that deal in particular things. They collect, it could be customers, it could be passengers, it could be lots of different things. They want to be able to build profiles about those people or companies, like I said, or locations, any number of things can be considered an entity. The way they build upon it then is how they go about quantifying those profiles. We can help them do that, in fact, some of the work that I manage does that, but often times they do it themselves. They take the resolve data and that gets resolved nightly or even hourly. They build those profiles themselves for their own purpose. >> Then, to help us think about the application or the use case holistically, once they've built those profiles and essentially harmonized the data, what does that typically feed into? >> Oh gosh, any number of things really. Oh, shoot. We've got deployments in AWS in the cloud, we've got deployments, lots of deployments on premises obviously. That can go anywhere from relational databases to graph query language databases. Lots of different places from there for sure. >> Okay so, this actually sounds like everyone talks now about machine learning and forming every category of software. This sounds like you take the old style ETL, where master data was a value add layer on top, and that was, it took a fair amount of human judgment to do. Now, you're putting that service on top of ETL and you're largely automating it, probably with, I assume, some supervised guidance, supervised training. >> Yes, so we're getting into the machine learning space as far as entity extraction and resolution and recognition because more and more data is unstructured. But machine learning isn't necessarily a baked in part of that. Actually entity resolution is a prerequisite, I think, for quality machine learning. So if Rob Lantz is a customer, I want to be able to know what has Rob Lantz bought in the past from me. And maybe what is Rob Lantz talking about in social media? Well I need to know how to figure out who those people are and who's Rob Lantz and who's Robert Lantz is a completely different person, I don't want to collapse those two things together. Then I would build machine learning on top of that to say, right, now what's his behavior going to be in the future. But once I have that robust profile built up, I can derive a lot more interesting features with which to apply the machine learning. >> Okay, so you are a Data Bricks customer and there's also a burgeoning partnership. >> Rob: Yeah, I think that's true. >> So talk to us a little bit about what are some of the frustrations you had before adopting Data Bricks and maybe why you choose it. >> Yeah, sure. So the frustrations primarily with a traditional Hadoop environment involved having to go from one customer site to another customer site with an incredibly complex technology stack and then do a lot of the cluster management for those customers even after they'd already set it up because of all the inner workings of Hadoop and that ecosystem. Getting our Spark application installed there, we had to penetrate layers and layers of configuration in order to tune it appropriately to get the performance we needed. >> David: Okay, and were you at the keynote this morning? >> I was not, actually. >> Okay, I'm not going to ask you about that then. >> Ah. >> But I am going to ask you a little bit about your wishlist. You've been talking to people maybe in the hallway here, you just got here today but, what do you wish the community would do or develop, what would you like to learn while you're here? >> Learning while I'm here, I've already picked up a lot. So much going on and it's such a fast paced environment, it's really exciting. I think if I had a wishlist, I would want a more robust ML Lib, machine learning library. All the things that you can get on traditional, in scientific computing stacks moved onto a Spark ML Lib for easier access. On a cluster would be great. >> I thought several years ago ML Lib took over from Mahoot as the most active open source community for adding, really, I thought, scale out machine learning algorithms. If it doesn't have it all now, or maybe all is something you never reach, kind of like Red Queen effect, you know? >> Rob: For sure, for sure. >> What else is attracting these scale out implementations of the machine learning algorithms? >> Um? >> In other words, what are the platforms? If it's not Spark then... >> I don't think it exists frankly, unless you write your own. I think that would be the way to go. That's the way to go about it now. I think what organizations are having to do with machine learning in a distributed environment is just go with good enough, right. Whereas maybe some of the ensemble methods that are, actually aren't even really cutting edge necessarily, but you can really do a lot of tuning on those things, doing that tuning distributed at scale would be really powerful. I read somewhere, and I'm not going to be able to quote exactly where it was but, actually throwing more data at a problem is more valuable than tuning a perfect algorithm frankly. If we could combine the two, I think that would be really powerful. That is, finding the right algorithm and throwing all the data at it would get you a really solid model that would pick up on that signal that underlies any of these phenomena. >> David: Okay well, go ahead George. >> I was going to ask, I think that goes back to, I don't know if it was Google Paper, or one of the Google search quality guys who's a luminary in the machine learning space says, "data always trumps algorithms." >> I believe that's true and that's true in my experience certainly. >> Once you had this machine learning and once you've perhaps simplified the multi-vendor stack, then what is your solution start looking like in terms of broadening its appeal, because of the lower TCO. And then, perhaps embracing more use cases. >> I don't know that it necessarily embraces more use cases because entity resolution applies so broadly already, but what I would say is will give us more time to focus on improving the ER itself. That's I think going to be a really, really powerful improvement we can make to Novetta entity analytics as it stands right now. That's going to go into, we alluded to before, the machine learning as part of the entity resolution. Entity extraction, automated entity extraction from unstructured information and not just unstructured text but unstructured images and video. Could be a really powerful thing. Taking in stuff that isn't tagged and pulling the entities out of that automatically without actually having to have a human in the loop. Pulling every name out, every phone number out, every address out. Go ahead, sorry. >> This goes back to a couple conversations we've had today where people say data trumps algorithms, even if they don't say it explicitly, so the cloud vendors who are sitting on billions of photos, many of which might have house street addresses and things like that, or faces, how do you make better... How do you extract better tuning for your algorithms from data sets that I assume are smaller than the cloud vendors? >> They're pretty big. We employ data engineers that are very experienced at tagging that stuff manually. What I would envision would happen is we would apply somebody for a week or two weeks, to go in and tag the data as appropriate. In fact, we have products that go in and do concept tagging already across multiple languages. That's going to be the subject of my talk tomorrow as a matter of fact. But we can tag things manually or with machine assistance and then use that as a training set to go apply to the much larger data set. I'm not so worried about the scale of the data, we already have a lot, a lot of data. I think it's going to be getting that proof set that's already tagged. >> So what you're saying is, it actually sounds kind of important. That actually almost ties into what we hear about Facebook training their messenger bot where we can't do it purely just on training data so we're going to take some data that needs semi-supervision, and that becomes our new labeled set, our new training data. Then we can run it against this broad, unwashed mass of training data. Is that the strategy? >> Certainly we would get there. We would want to get there and that's the beauty of what Data Bricks promises, is that ability to save a lot of the time that we would spend doing the nug work on cluster management to innovate in that way and we're really excited about that. >> Alright, we've got just a minute to go here before the break, so I wanted to ask you maybe, the wish list question, I've been asking everybody today, what do you wish you had? Whether it's in entity resolution or some other area in the next couple of years for Novetta, what's on your list? >> Well I think that would be the more robust machine learning library, all in Spark, kind of native, so we wouldn't have to deploy that ourselves. Then, I think everything else is there, frankly. We are very excited about the platform and the stack that comes with it. >> Well that's a great ending right there, George do you have any other questions you want to ask? Alright, we're just wrapping up here. Thank you so much, we appreciate you being on the show Rob, and we'll see you out there in the Expo. >> I appreciate it, thank you. >> Alright, thanks so much. >> George: It's good to meet you. >> Thanks. >> Alright, you are watching the CUBE here at Spark Summit 2017, stay tuned, we'll be back with our next guest.

Published Date : Jun 6 2017

SUMMARY :

brought to you by Data Bricks. Welcome back to the CUBE, I want to talk to you a little bit about and we've done that for about 15 years. and build profiles and that enables a more robust picture and how did it change once you adopted Spark? and get it done overnight or in hours and not weeks. and that predates my time and how do they build on your solution? and that gets resolved nightly or even hourly. We've got deployments in AWS in the cloud, and that was, it took a fair amount going to be in the future. Okay, so you are a Data Bricks customer and maybe why you choose it. to get the performance we needed. what would you like to learn while you're here? All the things that you can get on traditional, kind of like Red Queen effect, you know? If it's not Spark then... I read somewhere, and I'm not going to be able or one of the Google search quality guys and that's true in my experience certainly. because of the lower TCO. and pulling the entities out of that automatically that I assume are smaller than the cloud vendors? I think it's going to be getting that proof set Is that the strategy? is that ability to save a lot of the time and the stack that comes with it. and we'll see you out there in the Expo. Alright, you are watching the CUBE

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DavidPERSON

0.99+

GeorgePERSON

0.99+

Rob LantzPERSON

0.99+

Robert LantzPERSON

0.99+

San FranciscoLOCATION

0.99+

Data BricksORGANIZATION

0.99+

a weekQUANTITY

0.99+

RobPERSON

0.99+

twoQUANTITY

0.99+

FacebookORGANIZATION

0.99+

AWSORGANIZATION

0.99+

SparkTITLE

0.99+

NovettaORGANIZATION

0.99+

two weeksQUANTITY

0.99+

tomorrowDATE

0.99+

two thingsQUANTITY

0.98+

todayDATE

0.98+

Spark Summit 2017EVENT

0.98+

several years agoDATE

0.97+

HadoopTITLE

0.97+

GoogleORGANIZATION

0.97+

about 15 yearsQUANTITY

0.96+

#SparkSummitEVENT

0.95+

billions of photosQUANTITY

0.95+

this morningDATE

0.91+

ML LibTITLE

0.91+

billionsQUANTITY

0.9+

oneQUANTITY

0.87+

MahootORGANIZATION

0.85+

one customer siteQUANTITY

0.85+

HadoopDATE

0.84+

two peopleQUANTITY

0.74+

CUBEORGANIZATION

0.72+

Predictive AnalyticsORGANIZATION

0.68+

next coupleDATE

0.66+

DirectorPERSON

0.66+

yearsDATE

0.62+

Spark ML LibTITLE

0.61+

QueenTITLE

0.59+

MLTITLE

0.57+

coupleQUANTITY

0.54+

RedOTHER

0.53+

MapReduceORGANIZATION

0.52+

Google PaperORGANIZATION

0.47+