Image Title

Search Results for Picture Channel:

Yuanhao Sun, Transwarp | Big Data SV 2018


 

>> Announcer: Live, from San Jose, it's The Cube (light music) Presenting Big Data Silicon Valley. Brought to you by Silicon Angle Media, and its ecosystem partners. >> Hi, I'm Peter Burris and welcome back to Big Data SV, The Cube's, again, annual broadcast of what's happening in the big data marketplace here at, or adjacent to Strada here in San Jose. We've been broadcasting all day. We're going to be here tomorrow as well, over at the Forager eatery and place to come meander. So come on over. Spend some time with us. Now, we've had a number of great guests. Many of the thought leaders that are visiting here in San Jose today were on the big data marketplace. But I don't think any has traveled as far as our next guest. Yuanhao Sun is the ceo of Transwarp. Come all the way from Shanghai Yuanhao. It's once again great to see you on The Cube. Thank you very much for being here. >> Good to see you again. >> So Yuanhao, the Transwarp as a company has become extremely well known for great technology. There's a lot of reasons why that's the case, but you have some interesting updates on how the technology's being applied. Why don't you tell us what's going on? >> Okay, so, recently we announced the first order to the TPC-DS benchmark result. Our product, calling scepter, that is, SQL engine on top of Hadoop. We already add quite a lot of features, like dissre transactions, like a full SQL support. So that it can mimic, like oracle or the mutual, and also traditional database features so that we can pass the whole test. This single is also scalable, because it's distributed, scalable. So the large benchmark, like TPC-DS. It starts from 10 terabytes. SQL engine can pester without much trouble. >> So I know that there have been other firms that have claimed to pass TPCC-DS, but they haven't been audited. What does it mean to say you're audited? I'd presume that as a result, you've gone through some extremely stringent and specific tests to demonstrate that you can actually pass the entire suite. >> Yes, actually, there is a third party auditor. They already audit our test process and it results for the passed six, uh, five months. So it is fully audited. The reason why we can pass the test is because, actually, there's two major reasons for traditional databases. They are not scalable to the process large dataset. So they could not pass the test. For (mumbles) vendors, because the SQL engine, the features to reach enough to pass all the test. You know, there several steps in the benchmark, and the SQL queries, there are 99 queries, the syntax is not supported by all howve vendors yet. And also, the benchmark required to upload the data, after the queries, and then we run the queries for multiple concurrent users. That means you have to support disputed transactions. You have to make the upload data consistent. For howve vendors, the SQL engine on Hadoop. They haven't implemented the de-switch transaction capabilities. So that's why they failed to pass the benchmark. >> So I had the honor of traveling to Shanghai last year and going and speaking at your user conference and was quite impressed with the energy that was in the room as you announced a large number of new products. You've been very focused on taking what open source has to offer but adding significant value to it. As you said, you've done a lot with the SQL interfaces and various capabilities of SQL on top of Hadoop. Where is Transwarp going with its products today? How is it expanding? How is it being organizing? How is it being used? >> We group these products into three catalog, including big data, cloud, AI and the machine learning. So there are three categories. The big data, we upgrade the SQL engine, the stream engine, and we have a set of tools called adjustable studio to help people to streamline the big data operations. And the second part I lie is data cloud. We call it transwarp data cloud. So this product is going to be raised in early in May this year. So this product we build this product on top of common idiots. We provide how to buy the service, get a sense as service, air as a service to customers. A lot of people took credit multiple tenets. And they turned as isolated by network, storage, cpu. They free to create a clusters and speeding up on turning it off. So it can also scale hundreds of cost. So this is the, I think this is the first we implement, like, a network isolation and sweaty percendency in cobinets. So that it can support each day affairs and all how to components. And because it is elastic, just like car computing, but we run on bare model, people can consult the data, consult the applications in one place. Because all application and Hadoop components are conternalized, that means, we are talking images. We can spend up a very quickly and scale through a larger cluster. So this data cloud product is very interesting for large company, because they usually have a small IT team. But they have to provide a (mumbles), and a machine only capability to larger groups, like one found the people. So they need a convenient way to manage all these bigger clusters. And they have to isolate the resources. Even they need a bidding system. So this product is, we already have few big names in China, like China Post, Picture Channel, and Secret of Source Channel. So they are already applying this data cloud for their internal customers. >> And China has a, has a few people, so I presume that, you know, China Post for example, is probably a pretty big implementation. >> Yes so, they have a, but the IT team is, like less than 100 people, but they have to support thousands of users. So that's why they, you usually would deploy 100 cluster for each application, right, but today, for large organization, they have lots of applications. They hope to leverage big data capability, but a very small team, IT team, can also part of so many applications. So they need a convenient the way like a, just like when you put Hadoop on public cloud. We provide a product that allows you to provide a hardware service in private cloud on bare model machines. So this is the second product category. And the third is the machine learning and artificial intelligence. We provide a data sales platform, a machine learning tool, that is, interactive tools that allows people to create the machine only pipelines and models. We even implemented some automatic modeling capability that allow you to, to fisher in youring automatically or seeming automatically and to select the best items for you so that the machine learning can be, so everyone can be at Los Angeles. So they can use our tool to quickly create a models. And we also have some probuter models for different industry, like financial service, like banks, security companies, even iot. So we have different probuter machine only models for them. We just need to modify the template, then apply the machine only models to the applications very quickly. So that probably like a lesson, for example, for a bank customer, they just use it to deploy a model in one week. This is very quick for them. Otherwise, in the past, they have a company to build that application, to develop much models. They usually takes several months. Today it is much faster. So today we have three categories, particularly like cloud and machine learning. >> Peter Burris: Machine learning and AI. >> And so three products. >> And you've got some very, very big implementations. So you were talking about a couple of banks, but we were talking, before we came on, about some of the smart cities. >> Yuanhao Sun: Right. Kinds of things that you guys are doing at enormous scale. >> Yes, so we deploy our streaming productor for more than 300 cities in China. So this cluster is like connected together. So we use streaming capability to monitor the traffic and send the information from city to the central government. So all the, the sort of essential repoetry. So whenever illegal behavior on the road is detected, that information will be sent to the policeman, or the central repoetry within two second. Whenever you are seen by the camera in any place in China, their loads where we send out within two seconds. >> So the bad behavior is detected. It's identified as the location. The system also knows where the nearest police person is. And it sends a message and says, this car has performed something bad. >> Yeah and you should stop that car in the next station or in the next crossroad. Today there are tens of thousands policeman. They depends on this system for their daily work. >> Peter Burris: Interesting. >> So, just a question on, it sounds like one of your, sort of nearest competitors, in terms of, let's take the open source community, at least the APIs, and in their case open source, Waway. Have their been customers that tried to do a POC with you and with Waway, and said, well it took four months using the pure open source stuff, and it took, say, two weeks with your stack having, being much broader and deeper? Are any examples like that? >> There are quite a lot. We have more macro-share, like in financial services, we have about 100 bank users. So if we take all banks into account, for them they already use Hadoop. So we, our macro-share is above 60%. >> George Gilbert: 60. >> Yeah, in financial services. We usually do POC and, like run benchmarks. They are real workloads and usually it takes us three days or one week. They can found, we can speed up their workload very quickly. For Bank of China, they might go to their oracle workload to our platform. And they test our platform and the huave platform too. So the first thing is they cannot marry the whole oracle workload to open source Hadoop, because the missing features. We are able to support all this workloads with very minor modifications. So the modification takes only several hours. And we can finish the whole workload within two hours, but originally they take, usually take oracle more than one day, >> George Gilbert: Wow. >> more than ten hours to finish the workload. So it is very easy to see the benefits quickly. >> Now the you have a streaming product also with that same SQL interface. Are you going to see a migration of applications that used to be batch to more near real time or continuous, or will you see a whole new set of applications that weren't done before, because the latency wasn't appropriate? >> For streaming applications, real time cases they are mostly new applications, but if we are using storm api or spark streaming api, it is not so easy to develop your applications. And another issue is once you detect one new rule, you had to add those rules dynamically to your cluster. So to add to your printer, they do not have so many knowledge of writing scholar codes. They only know how to configure. Probably they are familiar with c-code. They just need to add one SQL statement to add a new rule. So that they can. >> In your system. >> Yeah, in our system. So it is much easier for them to program streaming applications. And for those customers who they don't have real time equations, they hope to do, like a real time data warehousing. They collect all this data from websites from their censors, like Petrol Channel, an oil company, the large oil company. They collect all the (mumbles) information directly to our streaming product. In the past, they just accredit to oracle and around the dashboard. So it only takes hours to see the results. But today, the application can be moved through our streaming product with only a few modifications, because they are all SQL statements. And this application becomes the real time. They can see the real time dashboard results in several seconds. >> So Yuanhao, you're number one in China. You're moving more aggressively to participate in the US market. What's the, last question, what's the biggest difference between being number one in China, the way that big data is being done in China versus the way you're encountering big data being done here, certainly in the US, for example? Is there a difference? >> I think there are some difference. Some a seem, katsumoto usually request a POC. But in China, they usually, I think they focus more on the results. They focus on what benefit they can gain from your product. So we have to prove them. So we have to hip them to my great application to see the benefits. I think in US, they focus more on technology than Chinese customers. >> Interesting, so they're more on technology here in the US, more in the outcome in China. Once again, Yuanhao Sun, from, ceo of Transwarp, thank you very much for being on The Cube. >> Thank you. And I'm Peter Burris with George Gilbert, my co-host, and we'll be back with more from big data SV, in San Jose. Come on over to the Forager, and spend some time with us. And we'll be back in a second. (light music)

Published Date : Mar 8 2018

SUMMARY :

Brought to you by Silicon Angle Media, over at the Forager eatery and place to come meander. So Yuanhao, the Transwarp as a company has become So that it can mimic, like oracle or the mutual, to demonstrate that you can actually pass the entire suite. And also, the benchmark required to upload the data, So I had the honor of traveling to Shanghai last year So this product is going to be raised you know, China Post for example, and to select the best items for you So you were talking about a couple of banks, Kinds of things that you guys are doing at enormous scale. from city to the central government. So the bad behavior is detected. or in the next crossroad. and it took, say, two weeks with your stack having, So if we take all banks into account, So the first thing is they cannot more than ten hours to finish the workload. Now the you have a streaming product also So to add to your printer, So it only takes hours to see the results. to participate in the US market. So we have to prove them. in the US, more in the outcome in China. Come on over to the Forager, and spend some time with us.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Peter BurrisPERSON

0.99+

ShanghaiLOCATION

0.99+

George GilbertPERSON

0.99+

USLOCATION

0.99+

ChinaLOCATION

0.99+

99 queriesQUANTITY

0.99+

three daysQUANTITY

0.99+

two weeksQUANTITY

0.99+

Silicon Angle MediaORGANIZATION

0.99+

five monthsQUANTITY

0.99+

San JoseLOCATION

0.99+

China PostORGANIZATION

0.99+

Picture ChannelORGANIZATION

0.99+

one weekQUANTITY

0.99+

sixQUANTITY

0.99+

four monthsQUANTITY

0.99+

Los AngelesLOCATION

0.99+

10 terabytesQUANTITY

0.99+

last yearDATE

0.99+

todayDATE

0.99+

TodayDATE

0.99+

tomorrowDATE

0.99+

more than one dayQUANTITY

0.99+

more than 300 citiesQUANTITY

0.99+

second partQUANTITY

0.99+

two hoursQUANTITY

0.99+

less than 100 peopleQUANTITY

0.99+

more than ten hoursQUANTITY

0.99+

WawayORGANIZATION

0.99+

Bank of ChinaORGANIZATION

0.99+

thirdQUANTITY

0.99+

HadoopTITLE

0.99+

Petrol ChannelORGANIZATION

0.99+

three productsQUANTITY

0.98+

one new ruleQUANTITY

0.98+

hundredsQUANTITY

0.98+

three categoriesQUANTITY

0.98+

SQLTITLE

0.98+

singleQUANTITY

0.98+

TranswarpORGANIZATION

0.98+

firstQUANTITY

0.98+

tens of thousands policemanQUANTITY

0.98+

Yuanhao SunORGANIZATION

0.98+

each applicationQUANTITY

0.98+

two secondsQUANTITY

0.98+

100 clusterQUANTITY

0.97+

first thingQUANTITY

0.97+

about 100 bank usersQUANTITY

0.97+

two secondQUANTITY

0.97+

each dayQUANTITY

0.97+

Big Data SVORGANIZATION

0.97+

The CubeORGANIZATION

0.96+

two major reasonsQUANTITY

0.95+

oneQUANTITY

0.95+

above 60%QUANTITY

0.95+

early in May this yearDATE

0.94+

Source ChannelORGANIZATION

0.93+

Big DataORGANIZATION

0.92+

ChineseOTHER

0.9+

StradaLOCATION

0.89+

second product categoryQUANTITY

0.88+