Image Title

Search Results for Kids Cup:

Mike Miller, AWS | AWS re:Invent 2020


 

>>from around the >>globe. It's the Cube with digital coverage of AWS reinvent 2020 sponsored by Intel and AWS. Yeah, >>Hi. We are the Cube live covering AWS reinvent 2020. I'm Lisa Martin, and I've got one of our cube alumni back with me. Mike Miller is here. General manager of A W s AI Devices at AWS. Mike, welcome back to the Cube. >>Hi, Lisa. Thank you so much for having me. It's really great to join you all again at this virtual reinvent. >>Yes, I think last year you were on set. We have always had to. That's at reinvent. And you you had the deep race, your car, and so we're obviously socially distance here. But talk to me about deepracer. What's going on? Some of the things that have gone on the last year that you're excited >>about. Yeah, I'd love to tell. Tell you a little bit about what's been happening. We've had a tremendous year. Obviously, Cove. It has restricted our ability to have our in person races. Eso we've really gone gone gangbusters with our virtual league. So we have monthly races for competitors that culminate in the championship. Um, at reinvent. So this year we've got over 100 competitors who have qualified and who are racing virtually with us this year at reinvent. They're participating in a series of knockout rounds that are being broadcast live on twitch over the next week. That will whittle the group down to AH Group of 32 which will have a Siris of single elimination brackets leading to eight finalists who will race Grand Prix style five laps, eight cars on the track at the same time and will crown the champion at the closing keynote on December 15th this year. >>Exciting? So you're bringing a reinforcement, learning together with with sports that so many of us have been missing during the pandemic. We talked to me a little bit about some of the things that air that you've improved with Deep Racer and some of the things that are coming next year. Yeah, >>absolutely so, First of all, Deep Racer not only has been interesting for individuals to participate in the league, but we continue to see great traction and adoption amongst big customers on dare, using Deep Racer for hands on learning for machine learning, and many of them are turning to Deep Racer to train their workforce in machine learning. So over 150 customers from the likes of Capital One Moody's, Accenture, DBS Bank, JPMorgan Chase, BMW and Toyota have held Deep Racer events for their workforces. And in fact, three of those customers Accenture, DBS Bank and J. P. Morgan Chase have each trained over 1000 employees in their organization because they're just super excited. And they find that deep racers away to drive that excitement and engagement across their customers. We even have Capital one expanded this to their families, so Capital One ran a deep raise. Their Kids Cup, a family friendly virtual competition this past year were over. 250 Children and 200 families got to get hands on with machine learning. >>So I envisioned some. You know, this being a big facilitator during the pandemic when there's been this massive shift to remote work has have you seen an uptick in it for companies that talking about training need to be ableto higher? Many, many more people remotely but also train them? Is deep Racer facilitator of that? Yeah, >>absolutely. Deep Racer has ah core component of the experience, which is all virtualized. So we have, ah, console and integration with other AWS services so that racers can participate using a three d racing simulator. They can actually see their car driving around a track in a three D world simulation. Um, we're also selling the physical devices. So you know, if participants want to get the one of those devices and translate what they've done in the virtual world to the real world, they can start doing that. And in fact, just this past year, we made our deep race or car available for purchase internationally through the Amazon Com website to help facilitate that. >>So how maney deep racers air out there? I'm just curious. >>Oh, thousands. Um, you know, And there what? What we've seen is some companies will purchase you, know them in bulk and use them for their internal leagues. Just like you know, JP Morgan Chase on DBS Bank. These folks have their own kind of tracks and racers that they'll use to facilitate both in person as well as the virtual racing. >>I'm curious with this shift to remote that we mentioned a minute ago. How are you seeing deepracer as a facilitator of engagement. You mentioned engagement. And that's one of the biggest challenges that so Maney teams develops. Processes have without being co located with each other deep Brister help with that. I mean, from an engagement perspective, I think >>so. What we've seen is that Deep Racer is just fun to get your hands on. And we really lower the learning curve for machine learning. And in particular, this branch called reinforcement Learning, which is where you train this agent through trial and error toe, learn how to do a new, complex task. Um, and what we've seen is that customers who have introduced Deep Racer, um, as an event for their employees have seen ah, very wide variety of employees. Skill sets, um, kind of get engaged. So you've got not just the hardcore deep data scientists or the M L engineers. You've got Web front end programmers. You even have some non technical folks who want to get their hands dirty. Onda learn about machine learning and Deep Racer really is a nice, gradual introduction to doing that. You can get engaged with it with very little kind of coding knowledge at all. >>So talk to me about some of the new services. And let's look at some specific use case customer use cases with each service. Yeah, >>absolutely. So just to set the context. You know, Amazon's got hundreds. A ws has hundreds of thousands of customers doing machine learning on AWS. No customers of all sizes are embedding machine learning into their no core business processes. And one of the things that we always do it Amazon is We're listening to customers. You know, 90 to 95% of our road maps are driven by customer feedback. And so, as we've been talking to these industrial manufacturing customers, they've been telling us, Hey, we've got data. We've got these processes that are happening in our industrial sites. Um, and we just need some help connecting the dots like, how do we really most effectively use machine learning to improve our processes in these industrial and manufacturing sites? And so we've come up with these five services. They're focused on industrial manufacturing customers, uh, two of the services air focused around, um, predictive maintenance and, uh, the other three services air focused on computer vision. Um, and so let's start with the predictive maintenance side. So we announced Amazon Monitor On and Amazon look out for equipment. So these services both enable predictive maintenance powered by machine learning in a way that doesn't require the customer to have any machine learning expertise. So Mono Tron is an end to end machine learning system with sensors, gateway and an ML service that can detect anomalies and predict when industrial equipment will require maintenance. I've actually got a couple examples here of the sensors in the gateway, so this is Amazon monitor on these little sensors. This little guy is a vibration and temperature sensor that's battery operated, and wireless connects to the gateway, which then transfers the data up to the M L Service in the cloud. And what happens is, um, the sensors can be connected to any rotating machinery like pump. Pour a fan or a compressor, and they will send data up to the machine learning cloud service, which will detect anomalies or sort of irregular kind of sensor readings and then alert via a mobile app. Just a tech or a maintenance technician at an industrial site to go have a look at their equipment and do some preventative maintenance. So um, it's super extreme line to end to end and easy for, you know, a company that has no machine learning expertise to take advantage of >>really helping them get on board quite quickly. Yeah, >>absolutely. It's simple tea set up. There's really very little configuration. It's just a matter of placing the sensors, pairing them up with the mobile app and you're off and running. >>Excellent. I like easy. So some of the other use cases? Yeah, absolutely. >>So So we've seen. So Amazon fulfillment centers actually have, um, enormous amounts of equipment you can imagine, you know, the size of an Amazon fulfillment center. 28 football fields, long miles of conveyor belts and Amazon fulfillment centers have started to use Amazon monitor on, uh, to monitor some of their conveyor belts. And we've got a filament center in Germany that has started using these 1000 sensors, and they've already been able to, you know, do predictive maintenance and prevent downtime, which is super costly, you know, for businesses, we've also got customers like Fender, you know, who makes guitars and amplifiers and musical equipment. Here in the US, they're adopting Amazon monitor on for their industrial machinery, um, to help prevent downtime, which again can cost them a great deal as they kind of hand manufacture these high end guitars. Then there's Amazon. Look out for equipment, which is one step further from Amazon monitor on Amazon. Look out for equipment. Um provides a way for customers to send their own sensor data to AWS in order to build and train a model that returns predictions for detecting abnormal equipment behavior. So here we have a customer, for example, like GP uh, E P s in South Korea, or I'm sorry, g S E P s in South Korea there in industrial conglomerate, and they've been collecting their own data. So they have their own sensors from industrial equipment for a decade. And they've been using just kind of rule basic rules based systems to try to gain insight into that data. Well, now they're using Amazon, look out for equipment to take all of their existing sensor data, have Amazon for equipment, automatically generate machine learning models on, then process the sensor data to know when they're abnormalities or when some predictive maintenance needs to occur. >>So you've got the capabilities of working with with customers and industry that that don't have any ML training to those that do have been using sensors. So really, everybody has an opportunity here to leverage this new Amazon technology, not only for predicted, but one of the things I'm hearing is contact list, being able to understand what's going on without having to have someone physically there unless there is an issue in contact. This is not one of the words of 2020 but I think it probably should be. >>Yeah, absolutely. And in fact, that that was some of the genesis of some of the next industrial services that we announced that are based on computer vision. What we saw on what we heard when talking to these customers is they have what we call human inspection processes or manual inspection processes that are required today for everything from, you know, monitoring you like workplace safety, too, you know, quality of goods coming off of a machinery line or monitoring their yard and sort of their, you know, truck entry and exit on their looking for computer vision toe automate a lot of these tasks. And so we just announced a couple new services that use computer vision to do that to automate these once previously manual inspection tasks. So let's start with a W A. W s Panorama uses computer vision toe improve those operations and workplace safety. AWS Panorama is, uh, comes in two flavors. There's an appliance, which is, ah, box like this. Um, it basically can go get installed on your network, and it will automatically discover and start processing the video feeds from existing cameras. So there's no additional capital expense to take a W s panorama and have it apply computer vision to the cameras that you've already got deployed, you know, So customers are are seeing that, um, you know, computer vision is valuable, but the reason they want to do this at the edge and put this computer vision on site is because sometimes they need to make very low Leighton see decisions where if you have, like a fast moving industrial process, you can use computer vision. But I don't really want to incur the cost of sending data to the cloud and back. I need to make a split second decision, so we need machine learning that happens on premise. Sometimes they don't want to stream high bandwidth video. Or they just don't have the bandwidth to get this video back to the cloud and sometimes their data governance or privacy restrictions that restrict the company's ability to send images or video from their site, um, off site to the cloud. And so this is why Panorama takes this machine learning and makes it happen right here on the edge for customers. So we've got customers like Cargill who uses or who is going to use Panorama to improve their yard management. They wanna use computer vision to detect the size of trucks that drive into their granaries and then automatically assign them to an appropriately sized loading dock. You've got a customer like Siemens Mobility who you know, works with municipalities on, you know, traffic on by other transport solutions. They're going to use AWS Panorama to take advantage of those existing kind of traffic cameras and build machine learning models that can, you know, improve congestion, allocate curbside space, optimize parking. We've also got retail customers. For instance, Parkland is a Canadian fuel station, um, and retailer, you know, like a little quick stop, and they want to use Panorama to do things like count the people coming in and out of their stores and do heat maps like, Where are people visiting my store so I can optimize retail promotions and product placement? >>That's fantastic. The number of use cases is just, I imagine if we had more time like you could keep going and going. But thank you so much for not only sharing what's going on with Deep Racer and the innovations, but also for show until even though we weren't in person at reinvent this year, Great to have you back on the Cube. Mike. We appreciate your time. Yeah, thanks, Lisa, for having me. I appreciate it for Mike Miller. I'm Lisa Martin. You're watching the cubes Live coverage of aws reinvent 2020.

Published Date : Dec 2 2020

SUMMARY :

It's the Cube with digital coverage of AWS I'm Lisa Martin, and I've got one of our cube alumni back with me. It's really great to join you all again at this virtual And you you had the deep race, your car, and so we're obviously socially distance here. Yeah, I'd love to tell. We talked to me a little bit about some of the things that air that you've 250 Children and 200 families got to get hands on with machine learning. when there's been this massive shift to remote work has have you seen an uptick in it for companies So you know, if participants want to get the one of those devices and translate what they've So how maney deep racers air out there? Um, you know, And there what? And that's one of the biggest challenges that so Maney teams develops. And in particular, this branch called reinforcement Learning, which is where you train this agent So talk to me about some of the new services. that doesn't require the customer to have any machine learning expertise. Yeah, It's just a matter of placing the sensors, pairing them up with the mobile app and you're off and running. So some of the other use cases? and they've already been able to, you know, do predictive maintenance and prevent downtime, So really, everybody has an opportunity here to leverage this new Amazon technology, is because sometimes they need to make very low Leighton see decisions where if you have, Great to have you back on the Cube.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Lisa MartinPERSON

0.99+

ToyotaORGANIZATION

0.99+

AWSORGANIZATION

0.99+

BMWORGANIZATION

0.99+

DBS BankORGANIZATION

0.99+

Mike MillerPERSON

0.99+

JPMorgan ChaseORGANIZATION

0.99+

AccentureORGANIZATION

0.99+

twoQUANTITY

0.99+

GermanyLOCATION

0.99+

AmazonORGANIZATION

0.99+

LisaPERSON

0.99+

eight carsQUANTITY

0.99+

90QUANTITY

0.99+

five lapsQUANTITY

0.99+

December 15thDATE

0.99+

1000 sensorsQUANTITY

0.99+

MikePERSON

0.99+

USLOCATION

0.99+

South KoreaLOCATION

0.99+

Siemens MobilityORGANIZATION

0.99+

28 football fieldsQUANTITY

0.99+

three servicesQUANTITY

0.99+

last yearDATE

0.99+

JP Morgan ChaseORGANIZATION

0.99+

threeQUANTITY

0.99+

next yearDATE

0.99+

hundredsQUANTITY

0.99+

eight finalistsQUANTITY

0.99+

thousandsQUANTITY

0.99+

Capital oneORGANIZATION

0.99+

five servicesQUANTITY

0.99+

Capital OneORGANIZATION

0.99+

2020DATE

0.99+

ParklandORGANIZATION

0.99+

this yearDATE

0.99+

J. P. Morgan ChaseORGANIZATION

0.99+

CovePERSON

0.99+

two flavorsQUANTITY

0.99+

todayDATE

0.99+

each serviceQUANTITY

0.99+

oneQUANTITY

0.99+

bothQUANTITY

0.98+

PanoramaTITLE

0.98+

95%QUANTITY

0.98+

IntelORGANIZATION

0.98+

Deep RacerTITLE

0.98+

eachQUANTITY

0.98+

over 150 customersQUANTITY

0.98+

200 familiesQUANTITY

0.98+

over 100 competitorsQUANTITY

0.97+

FenderORGANIZATION

0.97+

Kids CupEVENT

0.97+

over 1000 employeesQUANTITY

0.97+

next weekDATE

0.97+

one stepQUANTITY

0.97+

LeightonORGANIZATION

0.96+

A WORGANIZATION

0.96+