Image Title

Search Results for Kent Libby:

Sri Satish Ambati, H2O.ai | CUBE Conversation, August 2019


 

(upbeat music) >> Woman Voiceover: From our studios in the heart of Silicon Valley, Palo Alto, California this is a CUBE Conversation. >> Hello and welcome to this special CUBE Conversation here in Palo Alto, California, CUBE Studios, I'm John Furrier, host of theCUBE, here with Sri Ambati. He's the founder and CEO of H20.ai. CUBE Alum, hot start up right in the action of all the machine learning, artificial intelligence, with democratization the role of data in the future, it's all happening with Cloud 2.0, DevOps 2.0, Sri, great to see you. Thanks for coming by. You're a neighbor, you're right down the street from us at our studio here. >> It's exciting to be at theCUBE Com. >> That's KubeCon, that's Kubernetes Con. CUBEcon, coming soon, not to be confused with KubeCon. Great to see you. So tell us about the company, what's going on, you guys are smoking hot, congratulations. You got the right formula here with AI. Explain what's going on. >> It started about seven years ago, and .ai was just a new fad that arrived that arrived in Silicon Valley. And today we have thousands of companies in AI, and we're very excited to be partners in making more companies become AI-first. And our vision here is to democratize AI, and we've made it simple with our open source, made it easy for people to start adapting data science and machine learning in different functions inside their large organizations. And apply that for different use cases across financial services, insurance, health care. We leapfrogged in 2016 and built our first closed source product, Driverless AI, we made it on GPUs using the latest hardware and software innovations. Open source AI has funded the rise of automatic machine learning, Which further reduces the need for extraordinary talent to fill the machine learning. No one has time today, and then we're trying to really bring that automatic machine learning at a very significant crunch time for AI, so people can consume AI better. >> You know, this is one of the things that I love about the current state of the market right now, the entrepreneur market as well as startups and growing companies that are going to go public. Is that there's a new breed of entrepreneurship going on around large scale, standing up infrastructure, shortening the time it takes to do something. Like provisioning. The old AIs, you got to be a PHD. And we're seeing this in data science, you don't have to be a python coder. This democratization is not just a tag line, actually the reality is of a business opportunity. Whoever can provide the infrastructure and the systems for people to do it. It is an opportunity, you guys are doing that. This is a real dynamic. This is a new way, a new kind of dynamic and an industry. >> The three real characteristics on ability to adopt AI, one is data is a team sport. Which means you've got to bring different dimensions within your organization to be able to take advantage of data and AI. And you've got to bring in your domain scientists, work closely with your data scientists, work closely with your data engineers, produce applications that can be deployed, and then get your design on top of it that can convince users or strategists to make those decisions that data is showing up So that takes a multi-dimensional workforce to work closely together. The real problem in adoption of AI today is not just technology, it's also culture. So we're kind of bringing those aspects together in formal products. One of our products, for example, Explainable AI. It's helping the data scientists tell a story that businesses can understand. Why is the model deciding I need to take this test in this direction? Why is this model giving this particular nurse a high credit score even though she doesn't have a high school graduation? That kind of figuring out those democratization goes all the way down. Why is the model deciding what it's deciding, and explaining and breaking that down into English. And building a trust is a huge aspect in AI right now. >> Well I want to get to the talent, and the time, and the trust equation on the next talk, but I want to get the hard news out there. You guys have some news, Driverless AI is one of your core things. Explain the news, what's the big news? >> The big news has been that... AI's a money ball for business, right? And money ball as it has been played out has been the experts were left out of the field, and algorithms taking over. And there is no participation between experts, the domain scientists, and the data scientists. And what we're bringing with the new product in Driverless AI, is an ability for companies to take our AI and become AI companies themselves. The real AI race is not between the Googles and the Amazons and the Microsofts and other AI companies, AI software companies. The real AI race is in the verticals and how can a company which is a bank, or an insurance giant, or a healthcare company take AI platforms and become, take the data and monetize the data and become AI companies themselves. >> Yeah, that's a really profound statement I would agree with 100% on that. I think we saw that early on in the big data world around Hadoop, well Hadoop kind of died by the wayside, but Dave Vellante and the WikiBon team have observed, and they actually predicted, that the most value was going to come from practitioners, not the vendors. 'Cause they're the ones who have the data. And you mentioned verticals, this is another interesting point I want to get more explanation from you on, is that apps are driven by data. Data needs domain-specific information. So you can't just say "I have data, therefore magic happens" it's really at the edge of the domain speak or the domain feature of the application. This is where the data is, so this kind of supports your idea that the AI's about the companies that are using it, not the suppliers of the technology. >> Our vision has always been how we make our customers satisfied. We focus on the customer, and through that we actually make customer one of the product managers inside the company. And the doors that open from working very closely with some of our leading customers is that we need to get them to participate and take AIs, algorithms, and platforms, that can tune automatically the algorithms, and have the right hyper parameter optimizations, the right features. And augment the right data sets that they have. There's a whole data lake around there, around data architecture today. Which data sets am I not using in my current problem I'm solving, that's a reasonable problem I'm looking at. That combination of these various pieces have been automated in Driverless AI. And the new version that we're now bringing to market is able to allow them to create their own recipes, bring their own transformers, and make an automatic fit for their particular race. So if you think about this as we built all the components of a race car, you're going to take it and apply it for that particular race to win. >> John: So that's the word driverless comes in. It's driverless in the sense of you don't really need a full operator, it kind of operates on its own. >> In some sense it's driverless. They're taking the data scientists, giving them a power tool. Historically, before automatic machine learning, driverless is in the umbrella of machine learning, they would fine tune, learning the nuances of the data, and the problem at hand, what they're optimizing for, and the right tweaks in the algorithm. So they have to understand how deep the streets are going to be, how many layers of deep learning they need, what variation of deep learning they should put, and in a natural language crossing, what context they need. Long term shot, memory, all these pieces they have to learn themselves. And there were only a few grand masters or big data scientists in the world who could come up with the right answer for different problems. >> So you're spreading the love of AI around. >> Simplifying that. >> You get the big brains to work on it, and democratization means people can participate and the machines also can learn. Both humans and machines. >> Between our open source and the very maker-centric culture, we've been able to attract some of the world's top data scientists, physicists, and compiler engineers. To bring in a form factor that businesses can use. One data scientist in a company like Franklin Templeton can operate at a level of ten or hundreds of them, and then bring the best in data science in a form factor that they can plug in and play. >> I was having a concert with Kent Libby, who works with me on our platform team. We have all this data with theCUBE, and we were just talking, we need to hire a data scientist and AI specialist. And you go out and look around, you've got Google, Amazon, all these big players spending between 3-4 million per machine learning engineer. And that might be someone under the age of 30 with no experience. So the talent bore is huge. The cost to just hire, we can't hire these people. >> It's a global war. There's talent shortage in China, there's talent shortage in India, there's talent shortage in Europe, and we have offices in Europe and India. There's a talent shortage in Toronto and Ottawa. So it's a global shortage of physicists and mathematicians and data scientists. So that's where our tools can help. And we see Driverless AI as, you can drive to New York or you can fly to New York. >> I was talking to my son the other day, he's taking computer science classes in night school. And it's like, well you know, the machine learning in AI is kind of like dog training. You have dog training, you train the dog to do some tricks, it does some tricks. Well, if you're a coder you want to train the machine. This is the machine training. This is data science, is what AI possibility is there. Machines have to be taught something. There's a base input, machines just aren't self-learning on their own. So as you look at the science of AI, this becomes the question on the talent gap. Can the talent gap be closed by machines? And you got the time, you want speed, low latency, and trust. All these things are hard to do. All three, balancing all three is extremely difficult. What's your thoughts on those three variables? >> So that's why we brought AI to help with AI. Driverless AI is a concept of bringing AI to simplify. It's an expert system to do AI better. So you can actually give to the hands of the new data scientists, so you can perform at the power of an advanced data scientist. We're not disempowering the data scientist, the part's still for a data scientist. When you start with a confusion matrix, false positives, false negatives, that's something a data scientist can understand. When you talk about feature engineering, that's something a data scientist can understand. And what Driverless AI is really doing is helping him do that rapidly, and automated on the latest hardware, that's where the time is coming into. GPUs, FPGAs, TPUs, different form of clouds. Cheaper, right. So faster, cheaper, easier, that's the democratization aspect. But it's really targeted at the data scientist to prevent experimental error. In science, the data science is a search for truth, but it's a lot of experiments to get to truth. If you can make the cost of experiments really simple, cheaper, and prevent over fitting. That's a common problem in our science. Prevent bias, accidental bias that you introduce because the data is biased, right. So trying to prevent the flaws in doing data science. Leakage, usually your signal leaks, and how do you prevent those common pieces. That's where Driverless AI is coming at it. But if you put that in a box, what that really unlocks is imagination. The real hard problems in the world are still the same. >> AI for creative people, for instance. They want infrastructure, they don't want to have to be an expert. They want that value. That's the consumerization. >> AI is really the co founder for someone who's highly imaginative and has courage, right. And you don't have to look for founders to look for courage and imagination. A lot of entrepreneurs in large companies, who are trying to bring change to their organizations. >> Yeah, we always say, the intellectual property game is changing from protocols, locked in, patented, to you could have a workflow innovation. Change one little tweak of a process with data and powerful AI, that's the new magic IP equation. It's in the workflow, it's in the application, it's new opportunities. Do you agree with that? >> Absolutely. The leapfrog from here is businesses will come up with new business processes. So we looked at business process optimization, and globalization's going to help there. But AI, as you rightfully said earlier, is training computers. Not just programming them, you're schooling them. A host of computers that can now, with data, think almost at the same level as a Go player. The world's leading Go player. They can think at the same level of an expert in that space. And if that's happening, now I can transform. My business can run 24 by 7 and the rate at which I can assemble machines and feed it data. Data creation becomes, making new data becomes, the real value that AI can- >> H20.ai announcing Driverless AI, part of their flagship product around recipes and democratizing AI. Congratulations. Final point, take a minute to explain to the folks just the product, how they buy it, what's it made of, what's the commitment, how do they engage with you guys? >> It's an annual license, a software license people can download on our website. Get a three week trial, try it on their own. >> Free trial? >> A free trial, our recipes are open-source. About a hundred recipes, built by grand masters have been made open source. And they can be plugged, and tried. Customers of course don't have to make their software open source. They can take this, make it theirs. And our vision here is to make every company an AI company. And that means that they have to embrace AI, learn it, tweak it, participate, some of the leading conservation companies are giving it back in the open source. But the real vision here is to build that community of AI practitioners inside large organizations. We are here, our teams are global, and we're here to support that transformation of some large customers. >> So my problem of hiring an AI person, you could help me solve that. >> Right today. >> Okay, so anyone who's watching, please get their stuff and come get an opening here. That's the goal. But that is the dream, we want AI in our system. >> I have watched you the last ten years, you've been an entrepreneur with a fierce passion, you want AI to be a partner so you can take your message to wider audience and build monetization around the data you have created. Businesses are the largest, after the big data warlords we have, and data privacy's going to come eventually, but I think businesses are the second largest owners of data they just don't know how to monetize it, unlock value from it, and AI will help. >> Well you know we love data, we want to be data-driven, we want to go faster. Love the driverless vision, Driverless AI, H20.ai. Here in theCUBE I'm John Furrier with breaking news here in Silicon Valley from hot startup H20.ai. Thanks for watching.

Published Date : Aug 16 2019

SUMMARY :

in the heart of Silicon Valley, Palo Alto, California of all the machine learning, artificial intelligence, You got the right formula here with AI. Which further reduces the need for extraordinary talent and the systems for people to do it. Why is the model deciding I need to take and the trust equation on the next talk, and the data scientists. that the most value was going to come from practitioners, and have the right hyper parameter optimizations, It's driverless in the sense of you don't really need and the problem at hand, what they're optimizing for, You get the big brains to work on it, Between our open source and the very So the talent bore is huge. and we have offices in Europe and India. This is the machine training. of the new data scientists, so you can perform That's the consumerization. AI is really the co founder for someone who's It's in the workflow, and the rate at which I can assemble machines just the product, how they buy it, what's it made of, a software license people can download on our website. And that means that they have to embrace AI, you could help me solve that. But that is the dream, we want AI in our system. around the data you have created. Love the driverless vision, Driverless AI, H20.ai.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
EuropeLOCATION

0.99+

Dave VellantePERSON

0.99+

AmazonORGANIZATION

0.99+

New YorkLOCATION

0.99+

TorontoLOCATION

0.99+

GoogleORGANIZATION

0.99+

2016DATE

0.99+

AmazonsORGANIZATION

0.99+

MicrosoftsORGANIZATION

0.99+

August 2019DATE

0.99+

John FurrierPERSON

0.99+

IndiaLOCATION

0.99+

Silicon ValleyLOCATION

0.99+

OttawaLOCATION

0.99+

tenQUANTITY

0.99+

Sri Satish AmbatiPERSON

0.99+

JohnPERSON

0.99+

ChinaLOCATION

0.99+

three weekQUANTITY

0.99+

24QUANTITY

0.99+

GooglesORGANIZATION

0.99+

hundredsQUANTITY

0.99+

100%QUANTITY

0.99+

WikiBonORGANIZATION

0.99+

H20.aiORGANIZATION

0.99+

Cloud 2.0TITLE

0.99+

oneQUANTITY

0.98+

7QUANTITY

0.98+

Sri AmbatiPERSON

0.98+

OneQUANTITY

0.98+

3-4 millionQUANTITY

0.98+

todayDATE

0.98+

Franklin TempletonORGANIZATION

0.97+

BothQUANTITY

0.97+

three variablesQUANTITY

0.97+

DevOps 2.0TITLE

0.97+

CUBE ConversationEVENT

0.97+

One dataQUANTITY

0.96+

pythonTITLE

0.95+

Palo Alto, CaliforniaLOCATION

0.95+

About a hundred recipesQUANTITY

0.94+

firstQUANTITY

0.94+

EnglishOTHER

0.93+

CUBE StudiosORGANIZATION

0.91+

Kent LibbyPERSON

0.91+

HadoopTITLE

0.89+

about seven years agoDATE

0.88+

first closedQUANTITY

0.88+

CUBE AlumORGANIZATION

0.87+

GoTITLE

0.87+

Silicon Valley, Palo Alto, CaliforniaLOCATION

0.87+

KubernetesTITLE

0.85+

thousands of companiesQUANTITY

0.84+

30QUANTITY

0.84+

three real characteristicsQUANTITY

0.83+

threeQUANTITY

0.82+

theCUBEORGANIZATION

0.81+

H20.aiTITLE

0.79+

H2O.aiORGANIZATION

0.79+

second largestQUANTITY

0.76+

underQUANTITY

0.76+

KubeConEVENT

0.71+

last ten yearsDATE

0.7+

theCUBE ComORGANIZATION

0.68+

Con.EVENT

0.59+

.aiTITLE

0.57+

SriORGANIZATION

0.57+

CUBEconEVENT

0.55+