Matt Watts, NetApp & Kenneth Cukier, The Economist | NetApp Insight Berlin 2017
>> Narrator: Live from Berlin, Germany, it's theCUBE. Covering NetApp Insight 2017. Brought to you by NetApp. (techno music) Welcome back to theCUBE's live coverage of NetApp Insight here in Berlin, Germany. I'm your host, Rebecca Knight, along with my cohost Peter Burris. We have two guests for this segment. We have Matt Watts, he is the director and data strategist and director of technology at NetApp, and Kenneth Cukier, a senior editor at The Economist, and author of the best-selling book Big Data, and author of a soon to be best-selling book on AI. Welcome. Thank you. Thank you much for coming on the show. Pleasure to be here. So, this is the, we keep hearing NetApp saying this is the day of the data visionary. I'd love to hear both of you talk about what a data visionary is, and why companies, why this is a necessary role in today's companies. Okay, so I think if you look at the generations that we've been through in the late nineties, early 2000's, it was all about infrastructure with a little bit of application and some data associated to it. And then as we kind of rolled forward to the next decade the infrastructure discussion became less. It became more about the applications and increasingly more about the data. And if we look at the current decade that we're in right now, the infrastructure discussions have become less, and less, and less. We're still talking about applications, but the focus is on data. And what we haven't seen so much of during that time is the roles changing. We still have a lot of infrastructure people doing infrastructure roles, a lot of application people doing application roles. But the real value in this explosion of data that we're seeing is in the data. And it's time now that companies really look to put data visionaries, people like that in place to understand how do we exploit it, how do we use it, what should we gather, what could we do with the information that we do gather. And so I think the timing is just right now for people to be really considering that. Yeah, I would build on what Matt just said. That, functionally in the business and the enterprise we have the user of data, and we have the professional who collected the data. And sometimes we had a statistician who would analyze it. But pass it along to the user who is an executive, who is an MBA, who is the person who thinks with data and is going to present it to the board or to make a decision based on it. But that person isn't a specialist on data. That person probably doesn't, maybe doesn't even know math. And the person is thinking about the broader issues related to the company. The strategic imperatives. Maybe he speaks some languages, maybe he's a very good salesperson. There's no one in the middle, at least up until now, who can actually play that role of taking the data from the level of the bits and the bytes and in the weeds and the level of the infrastructure, and teasing out the value, and then translating it into the business strategy that can actually move the company along. Now, sometimes those people are going to actually move up the hierarchy themselves and become the executive. But they need not. Right now, there's so much data that's untapped you can still have this function of a person who bridges the world of being in the weeds with the infrastructure and with the data itself, and the larger broader executives suite that need to actually use that data. We've never had that function before, but we need to have it now. So, let me test you guys. Test something in you guys. So what I like to say is, we're at the middle of a significant break in the history of computing. The first 50 years or so it was known process, unknown technology. And so we threw all our time and attention at understanding the technology. >> Matt: Yeah. We knew accounting, we knew HR, we even knew supply-chain, because case law allowed us to decide where a title was when. [Matt] Yep. But today, we're unknown process, known technology. It's going to look like the cloud. Now, the details are always got to be worked out, but increasingly we are, we don't know the process. And so we're on a road map of discovery that is provided by data. Do you guys agree with that? So I would agree, but I'd make a nuance which is I think that's a very nice way of conceptualizing, and I don't disagree. But I would actually say that at the frontier the technology is still unknown as well. The algorithms are changing, the use cases, which you're pointing out, the processes are still, are now unknown, and I think that's a really important way to think about it, because suddenly a lot of possibility opens up when you admit that the processes are unknown because it's not going to look like the way it looked in the past. But I think for most people the technology's unknown because the frontier is changing so quickly. What we're doing with image recognition and voice recognition today is so different than it was just three years ago. Deep learning and reinforcement learning. Well it's going to require armies of people to understand that. Well, tell me about it. This is the full-- Is it? For the most, yes it's a full employment act for data scientists today, and I don't see that changing for a generation. So, everyone says oh what are we going to teach our kids? Well teach them math, teach them stats, teach them some coding. There's going to be a huge need. All you have to do is look at the society. Look at the world and think about what share of it is actually done well, optimized for outcomes that we all agree with. I would say it's probably between, it's in single percents. Probably between 1% and 5% of the world is optimized. One small example: medical science. We collect a lot of data in medicine. Do we use it? No. It's the biggest scandal going on in the world. If patients and citizens really understood the degree to which medical science is still trial and error based on the gumption of the human mind of a doctor and a nurse rather than the data that they actually already collect but don't reuse. There would be Congressional hearings everyday. People, there would be revolutions in the street because, here it is the duty of care of medical practitioners is simply not being upheld. Yeah, I'd take exception to that. Just, not to spend too much time on this, but at the end of the day, the fundamental role of the doctor is to reduce the uncertainty and the fear and the consequences of the patient. >> Kenneth: By any means necessary and they are not doing that. Hold on. You're absolutely right that the process of diagnosing and the process of treatment from a technical standpoint would be better. But there's still the human aspect of actually taking care of somebody. Yeah, I think that's true, and think there is something of the hand of the healer, but I think we're practicing a form of medicine that looks closer to black magic than it does today to science. Bring me the data scientist. >> Peter: Alright. And I think an interesting kind of parallel to that is when you jump on a plane, how often do you think the pilot actually lands that plane? He doesn't. No. Thank you. So, you still need somebody there. Yeah. But still need somebody as the oversight, as that kind of to make a judgment on. So I'm going to unify your story, my father was a cardiologist who was also a flight surgeon in the Air Force in the U.S., and was one of the few people that was empowered by the airline pilots association to determine whether or not someone was fit to fly. >> Matt: Right. And so my dad used to say that he is more worried about the health of a bus driver than he is of an airline pilot. That's great. So, in other words we've been gah-zumped by someone who's father was both a doctor and a pilot. You can't do better than that. So it turns out that we do want Sully on the Hudson, when things go awry. But in most cases I think we need this blend of the data on one side and the human on the other. The idea that the data just because we're going to go in the world of artificial intelligence machine learning is going to mean jobs will be eradicated left and right. I think that's a simplification. I think that the nuance that's much more real is that we're going to live in a hybrid world in which we're going to have human beings using data in much more impressive ways than they've ever done it before. So, talk about that. I mean I think you have made this compelling case that we have this huge need for data and this explosion of data plus the human judgment that is needed to either diagnose an illness or whether or not someone is fit to fly a plane. So then where are we going in terms of this data visionary and in terms of say more of a need for AI? Yeah. Well if you take a look at medicine, what we would have is, the diagnosis would probably be done say for a pathology exam by the algorithm. But then, the health care coach, the doctor will intervene and will have to both interpret this for, first of what it means, translate it to the patient, and then discuss with the patient the trade-offs in terms of their lifestyle choices. For some people, surgery is the right answer. For others, you might not want to do that. And, it's always different with all of the patients in terms of their age, in terms of whether they have children or not, whether they want the potential of complications. It's never so obvious. Just as we do that, or we will do that in medicine, we're going to do that in business as well. Because we're going to take data that we never had about decisions should we go into this market or that market. Should we take a risk and gamble with this product a little bit further, even though we're not having a lot of sales because the profit margins are so good on it. There's no algorithm that can tell you that. And in fact you really want the intellectual ambition and the thirst for risk taking of the human being that defies the data with an instinct that I think it's the right thing to do. And even if we're going to have failures with that, and we will, we'll have out-performance. And that's what we want as well. Because society advances by individual passions, not by whatever the spreadsheet says. Okay. Well there is this issue of agency right? So at the end of the day a human being can get fired, a machine cannot. A machine, in the U.S. anyway, software is covered under the legal strictures of copywriting. Which means it's a speech act. So, what do you do in circumstances where you need to point a finger at something for making a stupid mistake. You keep coming back to the human being. So there is going to be an interesting interplay over the next few years of how this is going to play out. So how is this working, or what's the impact on NetApp as you work with your customers on this stuff? So I think you've got the AI, ML, that's kind of one kind of discussion. And that can lead you into all sorts of rat holes or other discussions around well how do we make decisions, how do we trust it to make decisions, there's a whole aspect that you have to discuss around that. I think if you just bring it back to businesses in general, all the businesses that we look at are looking at new ways of creating new opportunities, new business models, and they're all collecting data. I mean we know the story about General Electric. Used to sell jet engines and now it's much more about what can we do with the data that we collect from the jet engines. So that's finding a new business model. And then you vote with a human role in that as well, is well is there a business model there? We can gather all of this information. We can collect it, we can refine it, we can sort it, but is there actually a new business model there? And I think it's those kind of things that are inspiring us as a company to say well we could uncover something incredible here. If we could unlock that data, we could make sure it's where it needs to be when it needs to be there. You have the resources to bring to bed to be able to extract value from it, you might find a new business model. And I think that's the aspect that I think is of real interest to us going forward, and kind of inspires a lot of what we're doing. Great. Kenneth, Matt, thank you so much for coming on the show. It was a really fun conversation. Thank you. Thank you for having us. We will have more from NetApp Insight just after this. (techno music)
SUMMARY :
and the enterprise we and the consequences of the patient. of the hand of the healer, in the Air Force in the U.S., You have the resources to bring to bed
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Peter Burris | PERSON | 0.99+ |
Rebecca Knight | PERSON | 0.99+ |
Matt Watts | PERSON | 0.99+ |
Kenneth | PERSON | 0.99+ |
Kenneth Cukier | PERSON | 0.99+ |
Peter | PERSON | 0.99+ |
General Electric | ORGANIZATION | 0.99+ |
Matt | PERSON | 0.99+ |
1% | QUANTITY | 0.99+ |
U.S. | LOCATION | 0.99+ |
NetApp | ORGANIZATION | 0.99+ |
5% | QUANTITY | 0.99+ |
two guests | QUANTITY | 0.99+ |
NetApp Insight | ORGANIZATION | 0.99+ |
late nineties | DATE | 0.99+ |
both | QUANTITY | 0.99+ |
Berlin, Germany | LOCATION | 0.99+ |
three years ago | DATE | 0.98+ |
next decade | DATE | 0.98+ |
NetApp | TITLE | 0.98+ |
one | QUANTITY | 0.98+ |
first 50 years | QUANTITY | 0.97+ |
NetApp Insight | ORGANIZATION | 0.97+ |
early 2000's | DATE | 0.97+ |
2017 | DATE | 0.95+ |
theCUBE | ORGANIZATION | 0.95+ |
first | QUANTITY | 0.95+ |
Berlin | LOCATION | 0.94+ |
The Economist | ORGANIZATION | 0.93+ |
today | DATE | 0.93+ |
single percents | QUANTITY | 0.93+ |
one side | QUANTITY | 0.92+ |
Big Data | TITLE | 0.89+ |
One small example | QUANTITY | 0.82+ |
NetApp Insight 2017 | EVENT | 0.67+ |
on the Hudson | TITLE | 0.63+ |
Sully | PERSON | 0.56+ |
current | DATE | 0.54+ |
few | QUANTITY | 0.53+ |
years | DATE | 0.5+ |