Image Title

Search Results for Jisheng Wang:

Dr. Jisheng Wang, Hewlett Packard Enterprise, Spark Summit 2017 - #SparkSummit - #theCUBE


 

>> Announcer: Live from San Francisco, it's theCUBE covering Sparks Summit 2017 brought to you by Databricks. >> You are watching theCUBE at Sparks Summit 2017. We continue our coverage here talking with developers, partners, customers, all things Spark, and today we're honored now to have our next guest Dr. Jisheng Wang who's the Senior Director of Data Science at the CTO Office at Hewlett Packard Enterprise. Dr. Wang, welcome to the show. >> Yeah, thanks for having me here. >> All right and also to my right we have Mr. Jim Kobielus who's the Lead Analyst for Data Science at Wikibon. Welcome, Jim. >> Great to be here like always. >> Well let's jump into it. At first I want to ask about your background a little bit. We were talking about the organization, maybe you could do a better job (laughs) of telling me where you came from and you just recently joined HPE. >> Yes. I actually recently joined HPE earlier this year through the Niara acquisition, and now I'm the Senior Director of Data Science in the CTO Office of Aruba. Actually, Aruba you probably know like two years back, HP acquired Aruba as a wireless networking company, and now Aruba takes charge of the whole enterprise networking business in HP which is about over three billion annual revenue every year now. >> Host: That's not confusing at all. I can follow you (laughs). >> Yes, okay. >> Well all I know is you're doing some exciting stuff with Spark, so maybe tell us about this new solution that you're developing. >> Yes, actually my most experience of Spark now goes back to the Niara time, so Niara was a three and a half year old startup that invented, reinvented the enterprise security using big data and data science. So what is the problem we solved, we tried to solve in Niara is called a UEBA, user and entity behavioral analytics. So I'll just try to be very brief here. Most of the transitional security solutions focus on detecting attackers from outside, but what if the origin of the attacker is inside the enterprise, say Snowden, what can you do? So you probably heard of many cases today employees leaving the company by stealing lots of the company's IP and sensitive data. So UEBA is a new solution try to monitor the behavioral change of the enterprise users to detect both this kind of malicious insider and also the compromised user. >> Host: Behavioral analytics. >> Yes, so it sounds like it's a native analytics which we run like a product. >> Yeah and Jim you've done a lot of work in the industry on this, so any questions you might have for him around UEBA? >> Yeah, give us a sense for how you're incorporating streaming analytics and machine learning into that UEBA solution and then where Spark fits into the overall approach that you take? >> Right, okay. So actually when we started three and a half years back, the first version when we developed the first version of the data pipeline, we used a mix of Hadoop, YARN, Spark, even Apache Storm for different kind of stream and batch analytics work. But soon after with increased maturity and also the momentum from this open source Apache Spark community, we migrated all our stream and batch, you know the ETL and data analytics work into Spark. And it's not just Spark. It's Spark, Spark streaming, MLE, the whole ecosystem of that. So there are at least a couple advantages we have experienced through this kind of a transition. The first thing which really helped us is the simplification of the infrastructure and also the reduction of the DevOps efforts there. >> So simplification around Spark, the whole stack of Spark that you mentioned. >> Yes. >> Okay. >> So for the Niara solution originally, we supported, even here today, we supported both the on-premise and the cloud deployment. For the cloud we also supported the public cloud like AWS, Microsoft Azure, and also Privia Cloud. So you can understand with, if we have to maintain a stack of different like open source tools over this kind of many different deployments, the overhead of doing the DevOps work to monitor, alarming, debugging this kind of infrastructure over different deployments is very hard. So Spark provides us some unified platform. We can integrate the streaming, you know batch, real-time, near real-time, or even longterm batch job all together. So that heavily reduced both the expertise and also the effort required for the DevOps. This is one of the biggest advantages we experienced, and certainly we also experienced something like the scalability, performance, and also the convenience for developers to develop a new applications, all of this, from Spark. >> So are you using the Spark structured streaming runtime inside of your application? Is that true? >> We actually use Spark in the steaming processing when the data, so like in the UEBS solutions, the first thing is collecting a lot of the data, different account data source, network data, cloud application data. So when the data comes in, the first thing is streaming job for the ETL, to process the data. Then after that, we actually also develop the some, like different frequency like one minute, 10 minute, one hour, one day of this analytics job on top of that. And even recently we have started some early adoption of the deep learning into this, how to use deep learning to monitor the user behavior change over time, especially after user gives a notice what user, is user going to access like most servers or download some of the sensitive data? So all of this requires very complex analytics infrastructure. >> Now there were some announcements today here at Spark Summit by Databricks of adding deep learning support to their core Spark code base. What are your thoughts about the deep learning pipelines, API, that they announced this morning? It's new news, I'll understand if you don't, haven't digested it totally, but you probably have some good thoughts on the topic. >> Yes, actually this is also news for me, so I can just speak from my current experience. How to integrate deep learning into Spark actually was a big challenge so far for us because what we used so far, the deep learning piece, we used TensorFlow. And certainly most of our other stream and data massaging or ETL work is done by Spark. So in this case, there are a couple ways to manage this, too. One is to set up two separate resource pool, one for Spark, the other one for TensorFlow, but in our deployment there is some very small on-premise department which has only like four node or five node cluster. It's not efficient to split resource in that way. So we actually also looking for some closer integration between deep learning and Spark. So one thing we looked before is called the TensorFlow on Spark which was open source a couple months ago by Yahoo. >> Right. >> So maybe this is certainly more exciting news for the Spark team to develop this native integration. >> Jim: Very good. >> Okay and we talked about the UEBA solution, but let's go back to a little broader HPE perspective. You have this concept called the intelligent edge, what's that all about? >> So that's a very cool name. Actually come a little bit back. I come from the enterprise background, and enterprise applications have some, actually a lag behind than consumer applications in terms of the adoption of the new data science technology. So there are some native challenges for that. For example, collecting and storing large amount of this enterprise sensitive data is a huge concern, especially in European countries. Also for the similar reason how to collect, normally weigh developer enterprise applications. You're lack of some good quantity and quality of the trending data. So this is some native challenges when you develop enterprise applications, but even despite of this, HPE and Aruba recently made several acquisitions of analytics companies to accelerate the adoption of analytics into different product line. Actually that intelligent age comes from this IOT, which is internet of things, is expected to be the fastest growing market in the next few years here. >> So are you going to be integrating the UEBA behavioral analytics and Spark capability into your IOT portfolio at HP? Is that a strategy or direction for you? >> Yes. Yes, for the big picture that certainly is. So you can think, I think some of the Gartner Report expected the number of the IOT devices is going to grow over 20 billion by 2020. Since all of this IOT devices are connected to either intranet or internet, either through wire or wireless, so as a networking company, we have the advantage of collecting data and even take some actions at the first of place. So the idea of this intelligent age is we want to turn each of these IOT devices, the small IOT devices like IP camera, like those motion detection, all of these small devices as opposed to the distributed sensor for the data collection and also some inline actor to do some real-time or even close to real-time decisions. For example, the behavior anomaly detection is a very good example here. If IOT devices is compromised, if the IP camera has been compromised, then use that to steal your internal data. We should detect and stop that at the first place. >> Can you tell me about the challenges of putting deep learning algorithms natively on resource constrained endpoints in the IOT? That must be really challenging to get them to perform well considering that there may be just a little bit of memory or flash capacity or whatever on the endpoints. Any thoughts about how that can be done effectively and efficiently? >> Very good question >> And at low cost. >> Yes, very good question. So there are two aspects into this. First is this global training of the intelligence which is not going to be done on each of the device. In that case, each of the device is more like the sensor for the data collection. So we are going to build a, collect the data sent to the cloud, or build all of this giant pool, like computing resource to trend the classifier, to trend the model, but when we trend the model, we are going to ship the model, so the inference and the detection of the model of those behavioral anomaly really happen on the endpoint. >> Do the training centrally and then push the trained algorithms down to the edge devices. >> Yes. But even like, the second as well even like you said, some of the device like say people try to put those small chips in the spoon, in the case of, in hospital to make it like more intelligent, you cannot put even just the detection piece there. So we also looking to some new technology. I know like Caffe recently announced, released some of the lightweight deep learning models. Also there's some, your probably know, there's some of the improvement from the chip industry. >> Jim: Yes. >> How to optimize the chip design for this kind of more analytics driven task there. So we are all looking to this different areas now. >> We have just a couple minutes left, and Jim you get one last question after this, but I got to ask you, what's on your wishlist? What do you wish you could learn or maybe what did you come to Spark Summit hoping to take away? >> I've always treated myself as a technical developer. One thing I am very excited these days is the emerging of the new technology, like a Spark, like TensorFlow, like Caffe, even Big-Deal which was announced this morning. So this is something like the first go, when I come to this big advanced industry events, I want to learn the new technology. And the second thing is mostly to share our experience and also about adopting of this new technology and also learn from other colleagues from different industries, how people change life, disrupt the old industry by taking advantage of the new technologies here. >> The community's growing fast. I'm sure you're going to receive what you're looking for. And Jim, final question? >> Yeah, I heard you mention DevOps and Spark in same context, and that's a huge theme we're seeing, more DevOps is being wrapped around the lifecycle of development and training and deployment of machine learning models. If you could have your ideal DevOps tool for Spark developers, what would it look like? What would it do in a nutshell? >> Actually it's still, I just share my personal experience. In Niara, we actually developed a lot of the in-house DevOps tools like for example, when you run a lot of different Spark jobs, stream, batch, like one minute batch verus one day batch job, how do you monitor the status of those workflows? How do you know when the data stop coming? How do you know when the workflow failed? Then even how, monitor is a big thing and then alarming when you have something failure or something wrong, how do you alarm it, and also the debug is another big challenge. So I certainly see the growing effort from both Databricks and the community on different aspects of that. >> Jim: Very good. >> All right, so I'm going to ask you for kind of a soundbite summary. I'm going to put you on the spot here, you're in an elevator and I want you to answer this one question. Spark has enabled me to do blank better than ever before. >> Certainly, certainly. I think as I explained before, it helped a lot from both the developer, even the start-up try to disrupt some industry. It helps a lot, and I'm really excited to see this deep learning integration, all different road map report, you know, down the road. I think they're on the right track. >> All right. Dr. Wang, thank you so much for spending some time with us. We appreciate it and go enjoy the rest of your day. >> Yeah, thanks for being here. >> And thank you for watching the Cube. We're here at Spark Summit 2017. We'll be back after the break with another guest. (easygoing electronic music)

Published Date : Jun 6 2017

SUMMARY :

brought to you by Databricks. at the CTO Office at Hewlett Packard Enterprise. All right and also to my right we have Mr. Jim Kobielus (laughs) of telling me where you came from of the whole enterprise networking business I can follow you (laughs). that you're developing. of the company's IP and sensitive data. Yes, so it sounds like it's a native analytics of the data pipeline, we used a mix of Hadoop, YARN, the whole stack of Spark that you mentioned. We can integrate the streaming, you know batch, of the deep learning into this, but you probably have some good thoughts on the topic. one for Spark, the other one for TensorFlow, for the Spark team to develop this native integration. Okay and we talked about the UEBA solution, Also for the similar reason how to collect, of the IOT devices is going to grow natively on resource constrained endpoints in the IOT? collect the data sent to the cloud, Do the training centrally But even like, the second as well even like you said, So we are all looking to this different areas now. And the second thing is mostly to share our experience And Jim, final question? If you could have your ideal DevOps tool So I certainly see the growing effort All right, so I'm going to ask you even the start-up try to disrupt some industry. We appreciate it and go enjoy the rest of your day. We'll be back after the break with another guest.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
JimPERSON

0.99+

HPEORGANIZATION

0.99+

HPORGANIZATION

0.99+

10 minuteQUANTITY

0.99+

one hourQUANTITY

0.99+

one minuteQUANTITY

0.99+

WangPERSON

0.99+

San FranciscoLOCATION

0.99+

YahooORGANIZATION

0.99+

Jisheng WangPERSON

0.99+

NiaraORGANIZATION

0.99+

first versionQUANTITY

0.99+

one dayQUANTITY

0.99+

two aspectsQUANTITY

0.99+

Jim KobielusPERSON

0.99+

Hewlett Packard EnterpriseORGANIZATION

0.99+

FirstQUANTITY

0.99+

CaffeORGANIZATION

0.99+

SparkTITLE

0.99+

SparkORGANIZATION

0.99+

oneQUANTITY

0.99+

eachQUANTITY

0.99+

three and a half yearQUANTITY

0.99+

bothQUANTITY

0.99+

Sparks Summit 2017EVENT

0.99+

firstQUANTITY

0.99+

DevOpsTITLE

0.99+

2020DATE

0.99+

second thingQUANTITY

0.99+

ArubaORGANIZATION

0.98+

SnowdenPERSON

0.98+

two years backDATE

0.98+

first thingQUANTITY

0.98+

one last questionQUANTITY

0.98+

AWSORGANIZATION

0.98+

over 20 billionQUANTITY

0.98+

one questionQUANTITY

0.98+

UEBATITLE

0.98+

todayDATE

0.98+

Spark SummitEVENT

0.97+

MicrosoftORGANIZATION

0.97+

Spark Summit 2017EVENT

0.96+

ApacheORGANIZATION

0.96+

three and a half years backDATE

0.96+

DatabricksORGANIZATION

0.96+

one day batchQUANTITY

0.96+

earlier this yearDATE

0.94+

ArubaLOCATION

0.94+

OneQUANTITY

0.94+

#SparkSummitEVENT

0.94+

One thingQUANTITY

0.94+

one thingQUANTITY

0.94+

EuropeanLOCATION

0.94+

GartnerORGANIZATION

0.93+