Jeff Weidner, Director Information Management | Customer Journey
>> Welcome back everybody. Jeff Frick here with theCube. We're in the Palo Alto studio talking about customer journeys today. And we're really excited to have professional, who's been doing this for a long time, he's Jeff Weidener, he's an Information Management Professional at this moment in time, and still, in the past and future, Jeff Welcome. >> Well thank you for having me. >> So you've been playing in the spheres for a very long time, and we talked a little bit before we turned the cameras on, about one of the great topics that I love in this area is, the customer, the 360 view of the customer. And that the Nirvana that everyone says you know, we're there, we're pulling in all these data sets, we know exactly what's going on, the person calls into the call center and they can pull up all their records, and there's this great vision that we're all striving for. How close are we to that? >> I think we're several years away from that perfect vision that we've talked about, for the last, I would say, 10, 10 to 15 years, that I've dealt with, from folks who were doing catalogs, like Sears catalogs, all the way to today, where we're trying to mix and match all this information, but most companies are not turning that into actionable data, or actionable information, in any way that's reasonable. And it's just because of the historic kind of Silo, nature of all these different systems, I mean, you know, I keep hearing about, we're gonna do it, all these things can tie together, we can dump all the data in a single data lake and pull it out, what are some of the inhibitors and what are some of the approaches to try to break some of those down? >> Most has been around getting that data lake, in order to put the data in its spot, basically try and make sure that, do I have the environment to work in? Many times a traditional enterprise warehouse doesn't have the right processing power, for you, the individual, who wants to do the work, or, doesn't have the capacity that'll allow you to just bring all the data in, try to ratify it. That's really just trying to do the data cleansing, and trying to just make some sense of it, cause many times, there aren't those domain experts. So I usually work in marketing, and on our Customer 360 exercise, was around, direct mail, email, all the interactions from our Salesmaker, and alike. So, when we look at the data, we go, I don't understand why the Salesmaker is forgetting X, of that behavior that we want to roll together. >> Right. >> But really it's finding that environment, second is the harmonization, is I have Bob Smith and Robert Smith, and Master Data Management Systems, are perhaps few and far between, of being real services that I can call as a data scientist, or as a data worker, to be able to say, how do I line these together? How can I make sure that all these customer touchpoints are really talking about the same individual, the company, or maybe just the consumer? >> Right. >> And finally, it is in those Customer 360 projects getting those teams to want to play together, getting that crowdsourcing, either to change the data, such as, I have data, as you mentioned around Chat, and I want you to tell me more about it, or I want you to tell me how I can break it down. >> Right, right. >> And if I wanna make changes to it, you go, we'll wait, where's your money, in order to make that change. >> Right, right. >> And there's so many aspects to it, right. So there's kind of the classic, you know, ingest, you gotta get the data, you gotta run it through the processes you said did harmonize it to bring it together, and then you gotta present it to the person who's in a position at the moment of truth, to do something with it. And those are three very very different challenges. They've been the same challenges forever, but now we're adding all this new stuff to it, like, are you pulling data from other sources outside of the system of record, are you pulling social data, are you pulling other system data that's not necessarily part of the transactional system. So, we're making the job harder, at the same time, we're trying to give more power to more people and not just the data scientists. But as you said I think, the data worker, so how's that transformation taking place where we're enabling more kind of data workers if you will, that aren't necessarily data scientists, to have the power that's available with the analytics, and an aggregated data set behind them. >> Right. Well we are creating or have created the wild west, we gave them tools, and said, go forth and make, make something out of it. Oh okay. Then we started having this decentralization of all the tools, and when we finally gave them the big tools, the big, that's quote unquote, big data tools, like the process, billings of records, that still is the wild west, but at least we're got them centralized with certain tools. So we were able to do at least standardize on the tool set, standardize on the data environment, so that at least when they're working on that space, we get to go, well, what are you working on? How are you working on that? What type of data are you working with? And how do we bring that back as a process, so that we can say, you did something on Chat Data? Great! Bob over here, he likes to work with that Chat data. So that, that exposure and transparency because of these centralization data. Now, new tools are adding on top of that, data catalogs, and putting inside tools that will make it so that you actually tell, that known information, all-in-one wiki-like interface. So we're trying to add more around putting the right permissions on top of that data, cataloging them in some way, with these either worksheets, or these information management tools, so that, if you're starting to deal with privacy data, you've got a flag, from, it's ingest all the way to the end. >> Right. >> But more controls are being seen as a way that a business is improving its maturity. >> Yeah. Now, the good news bad news is, more and more of the actual interactions are electronic. You want it going to places, they're not picking up the phone as much, as they're engaging with the company either via web browser or more and more a mobile browser, a mobile app, whatever. So, now the good news is, you can track all that. The bad news is, you can track all that. So, as we add more complexity, then there's this other little thing that everybody wants to do now, which is real-time, right, so with Kafka and Flink and Spark and all these new technologies, that enable you to basically see all the data as it's flowing, versus a sampling of the data from the past, a whole new opportunity, and challenge. So how are you seeing it and how are you gonna try to take advantage of that opportunity as well as address that challenge in your world. >> Well in my data science world, I've said, hey, give me some more data, keep on going, and when I have to put on the data sheriff hat, I'm now having to ask the executives, and our stakeholders, why streaming? Why do you really need to have all of this? >> It's the newest shiny toy. >> New shiny toy! So, when you talk to a stakeholder and you say, you need a shiny toy, great. I can get you that shiny toy. But I need an outcome. I need a, a value. And that helps me in tempering the next statement I give to them, you want streaming, so, or you want real time data, it's gonna cost you, three X. Are you gonna pay for it? Great. Here's my shiny toy. But yes, with the influx of all of this data, you're having to change the architecture and many times IT traditionally hasn't been able to make that, that rapid transition, which lends itself to shadow IT, or other folks trying to cobble something together, not to make that happen. >> And then there's this other pesky little thing that gets in the way, in the form of governance, and security. >> Compliance, privacy and finally marketability, I wanna give you a, I want you to feel that you're trusting me, in handling your data, but also that when I respond back to you, I'm giving you a good customer experience so called, don't be creepy. >> Right, right. >> Lately, the new compliance rule in Europe, GDPR, a policy that comes with a, well, a shotgun, that says, if there are violations of this policy, which involves privacy, or the ability for me to be forgotten, of the information that a corporation collects, it can mean four percent of a total company's revenue. >> Right. >> And that's on every instance, that's getting a lot of motivation for information governance today. >> Right. >> That risk, but the rules are around, trying to be able to say, where did the data come from? How did the data flow through the system? Who's touched that data? And those information management tools are mostly the human interaction, hey what are you guys working on? How are you guys working on it? What type of assets are you actually driving, so that we can bring it together for that privacy, that compliance, and workflow, and then later on top of that, that deliverability. How do you want to be contacted? How do you, what are the areas that you feel, are the ways that we should engage with you? And of course, everything that gets missed in any optimization exercise, the feedback loop. I get feedback from you that say, you're interested in puppies, but your data set says you're interested in cats. How do I make that go into a Customer 360 product. So, privacy, and being, and coming at, saying, oh, here's an advertisement for, for hippos and you go, what do you know about me that I don't know? >> Wrong browser. >> So you chose Datameer, along the journey, why did you choose them, how did you implement them, and how did they address some of these issues that we've just been discussing? >> Datameer was chosen primarily to take on that self-service data preparational layer from the beginning. Dealing with large amounts of online data, we move from from taking the digital intelligence tools that are out there, knowing about browser activities, the cookies that you have to get your identity, and said, we want the entire feed. We want all of that information, because we wanna make that actionable. I don't wanna just give it to a BI report, I wanna turn it into marketing automation. So we got the entire feed of data, and we worked on that with the usual SQL tools, but after a while, it wasn't manageable, by either, all of the 450 to 950 columns of data, or the fact that there are multiple teams working on it, and I had no idea, what they were able to do. So I couldn't share in that value, I couldn't reuse, the insights that they could have. So Datameer allowed for a visual interface, that was not in a coding language, that allowed people to start putting all of their work inside one interface, that didn't have to worry about saving it up to the server, it was all being done inside one environment. So that it could take not only the digital data, but the Salesforce CRN data, marry them together and let people work with it. And it broadened on the other areas, again allowing it that crowdsourcing of other people's analytics. Why? Mostly because of the state we are in around IT, is an inability to change rapidly, at least for us, in our field. >> Right. >> That my, the biggest problem we had, was there wasn't a scheduler. We didn't have the ability to get value out of our, on our work, without having someone to press the button and run it, and if they ran it, it took eight hours, they walked away, it would fail. And you had no, you had to go back and do it all over again. >> Oh yeah. >> So Datameer allows us to have that self-service interface, that had management that IT could agree upon, to let us have our own lab environment, and execute our work. >> So what was the results, when you suddenly give people access to this tool? I mean, were they receptive, did you have to train them a lot, did some people just get it and some people just don't, they don't wanna act on data, what was kind of the real-world results of rolling this out, within the population? Real-world results allowed us to get ten million dollars in uplift, in our marketing activities across multiple channels. >> Ten million dollars in uplift? How did you measure that? >> That was measured through the operating expenses, by one not sending that work outside, some of the management, of the data, is being, was sent outside, and that team builds their own models off of them, we said, we should be able to drink our own champagne, second, it was on the uplift of a direct mail and email campaign, so having a better response rate, and generally, not sending out a bunch of app store messages, that we weren't needing too. And then turning that into a list that could be sent out to our email and direct mail vendors, to say, this is what we believe, this account or contact is engaged with on the site. Give those a little bit more context. So we add that in, that we were hopefully getting and resonating a better message. >> Right. >> In, and where did you start? What was the easiest way to provide an opportunity for people new to this type of tooling access to have success? >> Mostly it was trying to, was taking pre-doctored worksheets, or already pre-packaged output, and one of the challenges that we had were people saying well I don't wanna work in a visual language, while they're users of tools like Tableau or Clicks, and others that are happy to drag-and-drop in their data, many of the data workers, the tried-and-true, are saying, I wanna write it in SQL. >> Mm hm. >> So, we had to give at least that last mile, analytical data set to them, and say, okay. Yeah, go ahead and move it over to your SQL environment, move it over into the space that you feel comfortable and you feel confident to control, but let' come on back and we'll translate it back to, this tool, we'll show you how easy it was, to go from, working with IT, which would take months, to go and doing it on yourself, which would take weeks, and the processing and the cost of your Siloed, shadowed IT environment, will go down in days. We're able to show them that, that acceleration of time to market of their data. >> What was your biggest surprise? An individual user, an individual use case, something that really you just didn't see coming, that's kind of a pleasant, you know the law of unintended consequences on the positive side. >> That's was such a wide option, I mean honestly, beginning back from the data science background, we thought it would just be, bring your data in, throw it on out there, and we're done. We went from, maybe about 20 large datasets of AdTech and Martech, and information, advertising, technology, marketing technology, data, to CRMM formation, order activity, and many other categories, just within marketing alone, and I think perhaps, the other big ah-ha moment was, since we brought that in, of other divisions data, those own teams came in, said, hey, we can use this too. >> Right. >> The adoption really surprised me that it would, you would have people that say, oh I can work with this, I have this freedom to work with this data. >> Right right. >> Well we see it time and time again, it's a recurring theme of all the things we cover, which is, you know a really, big piece of the innovation story, is giving, you know, more people access to more data, and the tools to actually manipulate it. So that you can unlock that brain power, as opposed to keeping it with the data scientists on Mahogany Row, and the super-big brain. So, sounds like that really validates that whole hypothesis. >> I went through reviewing hands-on 11 different tools, when I chose Datameer. This was everything from, big name companies, to small start-up companies, that have wild artificial intelligence slogans in their marketing material, and we chose it mostly because it had the right fit, as an end-to-end approach. It had the scheduler, it had the visual interface, it had the, enough management and other capabilities that IT would leave us alone. Some of the other products that we were looking at gave you, Pig-El-Lee to work with data, will allow you to schedule data, but they never came all together. And for the value we get out of it, we needed to have something altogether. >> Right. Well Jeff, thanks for taking a few minutes and sharing your story, really appreciate it, and it sounds like it was a really successful project. >> Was! >> All right. He's Jeff Weidener, I'm Jeff Frick, you're watching theCube from Palo Alto. Thanks for watching.
SUMMARY :
We're in the Palo Alto studio talking And that the Nirvana that of the approaches to try to the environment to work in? and I want you to tell me to it, you go, we'll wait, the processes you said did harmonize it so that we can say, you that a business is improving its maturity. of the actual interactions are electronic. I give to them, you want gets in the way, in the form I wanna give you a, I want you of the information that of motivation for that you feel, are the ways of the 450 to 950 columns That my, the biggest problem we had, that self-service interface, of the real-world results the data, is being, was sent and others that are happy to that you feel comfortable that really you just didn't back from the data science me that it would, you would So that you can unlock that And for the value we it was a really successful project. Thanks for watching.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Jeff Weidner | PERSON | 0.99+ |
Jeff Weidener | PERSON | 0.99+ |
Jeff Frick | PERSON | 0.99+ |
Jeff | PERSON | 0.99+ |
Europe | LOCATION | 0.99+ |
eight hours | QUANTITY | 0.99+ |
Bob | PERSON | 0.99+ |
ten million dollars | QUANTITY | 0.99+ |
Datameer | ORGANIZATION | 0.99+ |
Ten million dollars | QUANTITY | 0.99+ |
10 | QUANTITY | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
450 | QUANTITY | 0.99+ |
11 different tools | QUANTITY | 0.99+ |
four percent | QUANTITY | 0.99+ |
Sears | ORGANIZATION | 0.99+ |
GDPR | TITLE | 0.99+ |
three | QUANTITY | 0.99+ |
15 years | QUANTITY | 0.99+ |
second | QUANTITY | 0.98+ |
AdTech | ORGANIZATION | 0.98+ |
Martech | ORGANIZATION | 0.98+ |
SQL | TITLE | 0.98+ |
360 view | QUANTITY | 0.97+ |
950 columns | QUANTITY | 0.97+ |
today | DATE | 0.97+ |
theCube | ORGANIZATION | 0.97+ |
one | QUANTITY | 0.95+ |
Tableau | TITLE | 0.95+ |
one interface | QUANTITY | 0.93+ |
single | QUANTITY | 0.93+ |
Pig-El-Lee | ORGANIZATION | 0.93+ |
Master Data Management Systems | ORGANIZATION | 0.89+ |
Mahogany Row | TITLE | 0.86+ |
Spark | TITLE | 0.81+ |
one environment | QUANTITY | 0.8+ |
about 20 large datasets | QUANTITY | 0.79+ |
Clicks | TITLE | 0.77+ |
360 | QUANTITY | 0.77+ |
Robert Smith | PERSON | 0.73+ |
Bob | ORGANIZATION | 0.7+ |
Salesmaker | ORGANIZATION | 0.7+ |
Smith | PERSON | 0.67+ |
Salesforce | ORGANIZATION | 0.66+ |
Flink | ORGANIZATION | 0.66+ |
instance | QUANTITY | 0.63+ |
Kafka | ORGANIZATION | 0.52+ |
Nirvana | ORGANIZATION | 0.43+ |
CRN | TITLE | 0.39+ |