Image Title

Search Results for Ghent University:

Marcel Hild, Red Hat & Kenneth Hoste, Ghent University | Kubecon + Cloudnativecon Europe 2022


 

(upbeat music) >> Announcer: theCUBE presents KubeCon and CloudNativeCon Europe 2022, brought to you by Red Hat, the Cloud Native Computing Foundation, and its ecosystem partners. >> Welcome to Valencia, Spain, in KubeCon CloudNativeCon Europe 2022. I'm your host Keith Townsend, along with Paul Gillon. And we're going to talk to some amazing folks. But first Paul, do you remember your college days? >> Vaguely. (Keith laughing) A lot of them are lost. >> I think a lot of mine are lost as well. Well, not really, I got my degree as an adult, so they're not that far past. I can remember 'cause I have the student debt to prove it. (both laughing) Along with us today is Kenneth Hoste, systems administrator at Ghent University, and Marcel Hild, senior manager software engineering at Red Hat. You're working in office of the CTO? >> That's absolutely correct, yes >> So first off, I'm going to start off with you Kenneth. Tell us a little bit about the research that the university does. Like what's the end result? >> Oh, wow, that's a good question. So the research we do at university and again, is very broad. We have bioinformaticians, physicists, people looking at financial data, all kinds of stuff. And the end result can be very varied as well. Very often it's research papers, or spinoffs from the university. Yeah, depending on the domain I would say, it depends a lot on. >> So that sounds like the perfect environment for cloud native. Like the infrastructure that's completely flexible, that researchers can come and have a standard way of interacting, each team just use it's resources as they would, the Navana for cloud native. >> Yeah. >> But somehow, I'm going to guess HPC isn't quite there yet. >> Yeah, not really, no. So, HPC is a bit, let's say slow into adopting new technologies. And we're definitely seeing some impact from cloud, especially things like containers and Kubernetes, or we're starting to hear these things in HPC community as well. But I haven't seen a lot of HPC clusters who are really fully cloud native. Not yet at least. Maybe this is coming. And if I'm walking around here at KubeCon, I can definitely, I'm being convinced that it's coming. So whether we like it or not we're probably going to have to start worrying about stuff like this. But we're still, let's say, the most prominent technologies of things like NPI, which has been there for 20, 30 years. The Fortran programming language is still the main language, if you're looking at compute time being spent on supercomputers, over 1/2 of the time spent is in Fortran code essentially. >> Keith: Wow. >> So either the application itself where the simulations are being done is implemented in Fortran, or the libraries that we are talking to from Python for example, for doing heavy duty computations, that backend library is implemented in Fortran. So if you take all of that into account, easily over 1/2 of the time is spent in Fortran code. >> So is this because the libraries don't migrate easily to, distributed to that environment? >> Well, it's multiple things. So first of all, Fortran is very well suited for implementing these type of things. >> Paul: Right. >> We haven't really seen a better alternative maybe. And also it'll be a huge effort to re-implement that same functionality in a newer language. So, the use case has to be very convincing, there has to be a very good reason why you would move away from Fortran. And, at least the HPC community hasn't seen that reason yet. >> So in theory, and right now we're talking about the theory and then what it takes to get to the future. In theory, I can take that Fortran code put it in a compiler that runs in a container? >> Yeah, of course, yeah. >> Why isn't it that simple? >> I guess because traditionally HPC is very slow at adopting new stuff. So, I'm not saying there isn't a reason that we should start looking at these things. Flexibility is a very important one. For a lot of researchers, their compute needs are very picky. So they're doing research, they have an idea, they want you to run lots of simulations, get the results, but then they're silent for a long time writing the paper, or thinking about how to, what they can learn from the results. So there's lots of peaks, and that's a very good fit for a cloud environment. I guess at the scale of university you have enough diversity end users that all those peaks never fall at the same time. So if you have your big own infrastructure you can still fill it up quite easily and keep your users happy. But this busty thing, I guess we're seeing that more and more or so. >> So Marcel, talk to us about, Red Hat needing to service these types of end users. That it can be on both ends I'd imagine that you have some people still in writing in Fortran, you have some people that's asking you for objects based storage. Where's Fortran, I'm sorry, not Fortran, but where is Red Hat in providing the underlay and the capabilities for the HPC and AI community? >> Yeah. So, I think if you look at the user base that we're looking at, it's on this spectrum from development to production. So putting AI workloads into production, it's an interesting challenge but it's easier to solve, and it has been solved to some extent, than the development cycle. So what we're looking at in Kenneth's domain it's more like the end user, the data scientist, developing code, and doing these experiments. Putting them into production is that's where containers live and thrive. You can containerize your model, you containerize your workload, you deploy it into your OpenShift Kubernetes cluster, done, you monitor it, done. So the software developments and the SRE, the ops part, done, but how do I get the data scientist into this cloud native age where he's not developing on his laptop or on a machine, where he SSH into and then does some stuff there. And then some system admin comes and needs to tweak it because it's running out of memory or whatnot. But how do we take him and make him, well, and provide him an environment that is good enough to work in, in the browser, and then with IDE, where the workload of doing the computation and the experimentation is repeatable, so that the environment is always the same, it's reliable, so it's always up and running. It doesn't consume resources, although it's up and running. Where it's, where the supply chain and the configuration of... And the, well, the modules that are brought into the system are also reliable. So all these problems that we solved in the traditional software development world, now have to transition into the data science and HPC world, where the problems are similar, but yeah, it's different sets. It's more or less, also a huge educational problem and transitioning the tools over into that is something... >> Well, is this mostly a technical issue or is this a cultural issue? I mean, are HPC workloads that different from more conventional OLTP workloads that they would not adapt well to a distributed containerized environment? >> I think it's both. So, on one hand it's the cultural issue because you have two different communities, everybody is reinventing the wheel, everybody is some sort of siloed. So they think, okay, what we've done for 30 years now we, there's no need to change it. And they, so it's, that's what thrives and here at KubeCon where you have different communities coming together, okay, this is how you solved the problem, maybe this applies also to our problem. But it's also the, well, the tooling, which is bound to a machine, which is bound to an HPC computer, which is architecturally different than a distributed environment where you would treat your containers as kettle, and as something that you can replace, right? And the HPC community usually builds up huge machines, and these are like the gray machines. So it's also technical bit of moving it to this age. >> So the massively parallel nature of HPC workloads you're saying Kubernetes has not yet been adapted to that? >> Well, I think that parallelism works great. It's just a matter of moving that out from an HPC computer into the scale out factor of a Kubernetes cloud that elastically scales out. Whereas the traditional HPC computer, I think, and Kenneth can correct me here is, more like, I have this massive computer with 1 million cores or whatnot, and now use it. And I can use my time slice, and book my time slice there. Whereas this a Kubernetes example the concept is more like, I have 1000 cores and I declare something into it and scale it up and down based on the needs. >> So, Kenneth, this is where you talked about the culture part of the changes that need to be happening. And quite frankly, the computer is a tool, it's a tool to get to the answer. And if that tool is working, if I have a 1000 cores on a single HPC thing, and you're telling me, well, I can't get to a system with 2000 cores. And if you containerized your process and move it over then maybe I'll get to the answer 50% faster maybe I'm not that... Someone has to make that decision. How important is it to get people involved in these types of communities from a researcher? 'Cause research is very tight-knit community to have these conversations and help that see move happen. >> I think it's very important to that community should, let's say, the cloud community, HPC research community, they should be talking a lot more, there should be way more cross pollination than there is today. I'm actually, I'm happy that I've seen HPC mentioned at booths and talks quite often here at KubeCon, I wasn't really expecting that. And I'm not sure, it's my first KubeCon, so I don't know, but I think that's kind of new, it's pretty recent. If you're going to the HPC community conferences there containers have been there for a couple of years now, something like Kubernetes is still a bit new. But just this morning there was a keynote by a guy from CERN, who was explaining, they're basically slowly moving towards Kubernetes even for their HPC clusters as well. And he's seeing that as the future because all the flexibility it gives you and you can basically hide all that from the end user, from the researcher. They don't really have to know that they're running on top of Kubernetes. They shouldn't care. Like you said, to them it's just a tool, and they care about if the tool works, they can get their answers and that's what they want to do. How that's actually being done in the background they don't really care. >> So talk to me about the AI side of the equation, because when I talk to people doing AI, they're on the other end of the spectrum. What are some of the benefits they're seeing from containerization? >> I think it's the reproducibility of experiments. So, and data scientists are, they're data scientists and they do research. So they care about their experiment. And maybe they also care about putting the model into production. But, I think from a geeky perspective they are more interested in finding the next model, finding the next solution. So they do an experiment, and they're done with it, and then maybe it's going to production. So how do I repeat that experiment in a year from now, so that I can build on top of it? And a container I think is the best solution to wrap something with its dependency, like freeze it, maybe even with the data, store it away, and then come to it back later and redo the experiment or share the experiment with some of my fellow researchers, so that they don't have to go through the process of setting up an equivalent environment on their machines, be it their laptop, via their cloud environment. So you go to the internet, download something doesn't work, container works. >> Well, you said something that really intrigues me you know in concept, I can have a, let's say a one terabyte data set, have a experiment associated with that. Take a snapshot of that somehow, I don't know how, take a snapshot of that and then share it with the rest of the community and then continue my work. >> Marcel: Yeah. >> And then we can stop back and compare notes. Where are we at in a maturity scale? Like, what are some of the pitfalls or challenges customers should be looking out for? >> I think you actually said it right there, how do I snapshot a terabyte of data? It's, that's... >> It's a terabyte of data. (both conversing) >> It's a bit of a challenge. And if you snapshot it, you have two terabytes of data or you just snapshot the, like and get you to do a, okay, this is currently where we're at. So that's why the technology is evolving. How do we do source control management for data? How do we license data? How do we make sure that the data is unbiased, et cetera? So that's going more into the AI side of things. But at dealing with data in a declarative way in a containerized way, I think that's where currently a lot of innovation is happening. >> What do you mean by dealing with data in a declarative way? >> If I'm saying I run this experiment based on this data set and I'm running this other experiment based on this other data set, and I as the researcher don't care where the data is stored, I care that the data is accessible. And so I might declare, this is the process that I put on my data, like a data processing pipeline. These are the steps that it's going through. And eventually it will have gone through this process and I can work with my data. Pretty much like applying the concept of pipelines through data. Like you have these data pipelines and then now you have cube flow pipelines as one solution to apply the pipeline concept, to well, managing your data. >> Given the stateless nature of containers, is that an impediment to HPC adoption because of the very large data sets that are typically involved? >> I think it is if you have terabytes of data. Just, you have to get it to the place where the computation will happen, right? And just uploading that into the cloud is already a challenge. If you have the data sitting there on a supercomputer and maybe it was sitting there for two years, you probably don't care. And typically a lot of universities the researchers don't necessarily pay for the compute time they use. Like, this is also... At least in Ghent that's the case, it's centrally funded, which means, the researchers don't have to worry about the cost, they just get access to the supercomputer. If they need two terabytes of data, they get that space and they can park it on the system for years, no problem. If they need 200 terabytes of data, that's absolutely fine. >> But the university cares about the cost? >> The university cares about the cost, but they want to enable the researchers to do the research that they want to do. >> Right. >> And we always tell researchers don't feel constrained about things like compute power, storage space. If you're doing smaller research, because you're feeling constrained, you have to tell us, and we will just expand our storage system and buy a new cluster. >> Paul: Wonderful. >> So you, to enable your research. >> It's a nice environment to be in. I think this might be a Jevons paradox problem, you give researchers this capability you might, you're going to see some amazing things. Well, now the people are snapshoting, one, two, three, four, five, different versions of a one terabytes of data. It's a good problem to have, and I hope to have you back on theCUBE, talking about how Red Hat and Ghent have solved those problems. Thank you so much for joining theCUBE. From Valencia, Spain, I'm Keith Townsend along with Paul Gillon. And you're watching theCUBE, the leader in high tech coverage. (upbeat music)

Published Date : May 19 2022

SUMMARY :

brought to you by Red Hat, do you remember your college days? A lot of them are lost. the student debt to prove it. that the university does. So the research we do at university Like the infrastructure I'm going to guess HPC is still the main language, So either the application itself So first of all, So, the use case has talking about the theory I guess at the scale of university and the capabilities for and the experimentation is repeatable, And the HPC community usually down based on the needs. And quite frankly, the computer is a tool, And he's seeing that as the future What are some of the and redo the experiment the rest of the community And then we can stop I think you actually It's a terabyte of data. the AI side of things. I care that the data is accessible. for the compute time they use. to do the research that they want to do. and we will just expand our storage system and I hope to have you back on theCUBE,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Paul GillonPERSON

0.99+

Keith TownsendPERSON

0.99+

KennethPERSON

0.99+

Kenneth HostePERSON

0.99+

Marcel HildPERSON

0.99+

PaulPERSON

0.99+

Red HatORGANIZATION

0.99+

two yearsQUANTITY

0.99+

KeithPERSON

0.99+

MarcelPERSON

0.99+

1 million coresQUANTITY

0.99+

Cloud Native Computing FoundationORGANIZATION

0.99+

50%QUANTITY

0.99+

20QUANTITY

0.99+

FortranTITLE

0.99+

1000 coresQUANTITY

0.99+

30 yearsQUANTITY

0.99+

two terabytesQUANTITY

0.99+

CERNORGANIZATION

0.99+

2000 coresQUANTITY

0.99+

GhentLOCATION

0.99+

Valencia, SpainLOCATION

0.99+

firstQUANTITY

0.99+

GhentORGANIZATION

0.99+

one terabytesQUANTITY

0.99+

each teamQUANTITY

0.99+

one solutionQUANTITY

0.99+

KubeConEVENT

0.99+

todayDATE

0.99+

one terabyteQUANTITY

0.99+

PythonTITLE

0.99+

Ghent UniversityORGANIZATION

0.99+

KubernetesTITLE

0.98+

bothQUANTITY

0.98+

oneQUANTITY

0.98+

HPCORGANIZATION

0.98+

two different communitiesQUANTITY

0.96+

terabytes of dataQUANTITY

0.96+

both endsQUANTITY

0.96+

over 1/2QUANTITY

0.93+

twoQUANTITY

0.93+

CloudnativeconORGANIZATION

0.93+

CloudNativeCon Europe 2022EVENT

0.92+

this morningDATE

0.92+

a yearQUANTITY

0.91+

fiveQUANTITY

0.9+

theCUBEORGANIZATION

0.89+

FortranORGANIZATION

0.88+

KubeConORGANIZATION

0.87+

two terabytes of dataQUANTITY

0.86+

KubeCon CloudNativeCon Europe 2022EVENT

0.86+

EuropeLOCATION

0.85+

yearsQUANTITY

0.81+

a terabyte of dataQUANTITY

0.8+

NavanaORGANIZATION

0.8+

200 terabytes ofQUANTITY

0.79+

Kubecon +ORGANIZATION

0.77+